Step | Hyp | Ref
| Expression |
1 | | grpinv.1 |
. . . . . 6
⊢ 𝑋 = ran 𝐺 |
2 | | grpinv.2 |
. . . . . 6
⊢ 𝑈 = (GId‘𝐺) |
3 | | grpinv.3 |
. . . . . 6
⊢ 𝑁 = (inv‘𝐺) |
4 | 1, 2, 3 | grpoinvval 26761 |
. . . . 5
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) = (℩𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = 𝑈)) |
5 | 1, 2 | grpoinveu 26757 |
. . . . . 6
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ∃!𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = 𝑈) |
6 | | riotacl2 6524 |
. . . . . 6
⊢
(∃!𝑦 ∈
𝑋 (𝑦𝐺𝐴) = 𝑈 → (℩𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = 𝑈) ∈ {𝑦 ∈ 𝑋 ∣ (𝑦𝐺𝐴) = 𝑈}) |
7 | 5, 6 | syl 17 |
. . . . 5
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (℩𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = 𝑈) ∈ {𝑦 ∈ 𝑋 ∣ (𝑦𝐺𝐴) = 𝑈}) |
8 | 4, 7 | eqeltrd 2688 |
. . . 4
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ {𝑦 ∈ 𝑋 ∣ (𝑦𝐺𝐴) = 𝑈}) |
9 | | simpl 472 |
. . . . . . . . 9
⊢ (((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈) → (𝑦𝐺𝐴) = 𝑈) |
10 | 9 | rgenw 2908 |
. . . . . . . 8
⊢
∀𝑦 ∈
𝑋 (((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈) → (𝑦𝐺𝐴) = 𝑈) |
11 | 10 | a1i 11 |
. . . . . . 7
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ∀𝑦 ∈ 𝑋 (((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈) → (𝑦𝐺𝐴) = 𝑈)) |
12 | 1, 2 | grpoidinv2 26753 |
. . . . . . . 8
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴) ∧ ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈))) |
13 | 12 | simprd 478 |
. . . . . . 7
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)) |
14 | 11, 13, 5 | 3jca 1235 |
. . . . . 6
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (∀𝑦 ∈ 𝑋 (((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈) → (𝑦𝐺𝐴) = 𝑈) ∧ ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈) ∧ ∃!𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = 𝑈)) |
15 | | reupick2 3872 |
. . . . . 6
⊢
(((∀𝑦 ∈
𝑋 (((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈) → (𝑦𝐺𝐴) = 𝑈) ∧ ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈) ∧ ∃!𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = 𝑈) ∧ 𝑦 ∈ 𝑋) → ((𝑦𝐺𝐴) = 𝑈 ↔ ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈))) |
16 | 14, 15 | sylan 487 |
. . . . 5
⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → ((𝑦𝐺𝐴) = 𝑈 ↔ ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈))) |
17 | 16 | rabbidva 3163 |
. . . 4
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → {𝑦 ∈ 𝑋 ∣ (𝑦𝐺𝐴) = 𝑈} = {𝑦 ∈ 𝑋 ∣ ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)}) |
18 | 8, 17 | eleqtrd 2690 |
. . 3
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ {𝑦 ∈ 𝑋 ∣ ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)}) |
19 | | oveq1 6556 |
. . . . . 6
⊢ (𝑦 = (𝑁‘𝐴) → (𝑦𝐺𝐴) = ((𝑁‘𝐴)𝐺𝐴)) |
20 | 19 | eqeq1d 2612 |
. . . . 5
⊢ (𝑦 = (𝑁‘𝐴) → ((𝑦𝐺𝐴) = 𝑈 ↔ ((𝑁‘𝐴)𝐺𝐴) = 𝑈)) |
21 | | oveq2 6557 |
. . . . . 6
⊢ (𝑦 = (𝑁‘𝐴) → (𝐴𝐺𝑦) = (𝐴𝐺(𝑁‘𝐴))) |
22 | 21 | eqeq1d 2612 |
. . . . 5
⊢ (𝑦 = (𝑁‘𝐴) → ((𝐴𝐺𝑦) = 𝑈 ↔ (𝐴𝐺(𝑁‘𝐴)) = 𝑈)) |
23 | 20, 22 | anbi12d 743 |
. . . 4
⊢ (𝑦 = (𝑁‘𝐴) → (((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈) ↔ (((𝑁‘𝐴)𝐺𝐴) = 𝑈 ∧ (𝐴𝐺(𝑁‘𝐴)) = 𝑈))) |
24 | 23 | elrab 3331 |
. . 3
⊢ ((𝑁‘𝐴) ∈ {𝑦 ∈ 𝑋 ∣ ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)} ↔ ((𝑁‘𝐴) ∈ 𝑋 ∧ (((𝑁‘𝐴)𝐺𝐴) = 𝑈 ∧ (𝐴𝐺(𝑁‘𝐴)) = 𝑈))) |
25 | 18, 24 | sylib 207 |
. 2
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴) ∈ 𝑋 ∧ (((𝑁‘𝐴)𝐺𝐴) = 𝑈 ∧ (𝐴𝐺(𝑁‘𝐴)) = 𝑈))) |
26 | 25 | simprd 478 |
1
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (((𝑁‘𝐴)𝐺𝐴) = 𝑈 ∧ (𝐴𝐺(𝑁‘𝐴)) = 𝑈)) |