MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpinvcnv Structured version   Visualization version   GIF version

Theorem grpinvcnv 17306
Description: The group inverse is its own inverse function. (Contributed by Mario Carneiro, 14-Aug-2015.)
Hypotheses
Ref Expression
grpinvinv.b 𝐵 = (Base‘𝐺)
grpinvinv.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grpinvcnv (𝐺 ∈ Grp → 𝑁 = 𝑁)

Proof of Theorem grpinvcnv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . . 4 (𝑥𝐵 ↦ (𝑁𝑥)) = (𝑥𝐵 ↦ (𝑁𝑥))
2 grpinvinv.b . . . . 5 𝐵 = (Base‘𝐺)
3 grpinvinv.n . . . . 5 𝑁 = (invg𝐺)
42, 3grpinvcl 17290 . . . 4 ((𝐺 ∈ Grp ∧ 𝑥𝐵) → (𝑁𝑥) ∈ 𝐵)
52, 3grpinvcl 17290 . . . 4 ((𝐺 ∈ Grp ∧ 𝑦𝐵) → (𝑁𝑦) ∈ 𝐵)
6 eqid 2610 . . . . . . . . 9 (+g𝐺) = (+g𝐺)
7 eqid 2610 . . . . . . . . 9 (0g𝐺) = (0g𝐺)
82, 6, 7, 3grpinvid1 17293 . . . . . . . 8 ((𝐺 ∈ Grp ∧ 𝑦𝐵𝑥𝐵) → ((𝑁𝑦) = 𝑥 ↔ (𝑦(+g𝐺)𝑥) = (0g𝐺)))
983com23 1263 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) → ((𝑁𝑦) = 𝑥 ↔ (𝑦(+g𝐺)𝑥) = (0g𝐺)))
102, 6, 7, 3grpinvid2 17294 . . . . . . 7 ((𝐺 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) → ((𝑁𝑥) = 𝑦 ↔ (𝑦(+g𝐺)𝑥) = (0g𝐺)))
119, 10bitr4d 270 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑥𝐵𝑦𝐵) → ((𝑁𝑦) = 𝑥 ↔ (𝑁𝑥) = 𝑦))
12113expb 1258 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → ((𝑁𝑦) = 𝑥 ↔ (𝑁𝑥) = 𝑦))
13 eqcom 2617 . . . . 5 (𝑥 = (𝑁𝑦) ↔ (𝑁𝑦) = 𝑥)
14 eqcom 2617 . . . . 5 (𝑦 = (𝑁𝑥) ↔ (𝑁𝑥) = 𝑦)
1512, 13, 143bitr4g 302 . . . 4 ((𝐺 ∈ Grp ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 = (𝑁𝑦) ↔ 𝑦 = (𝑁𝑥)))
161, 4, 5, 15f1ocnv2d 6784 . . 3 (𝐺 ∈ Grp → ((𝑥𝐵 ↦ (𝑁𝑥)):𝐵1-1-onto𝐵(𝑥𝐵 ↦ (𝑁𝑥)) = (𝑦𝐵 ↦ (𝑁𝑦))))
1716simprd 478 . 2 (𝐺 ∈ Grp → (𝑥𝐵 ↦ (𝑁𝑥)) = (𝑦𝐵 ↦ (𝑁𝑦)))
182, 3grpinvf 17289 . . . 4 (𝐺 ∈ Grp → 𝑁:𝐵𝐵)
1918feqmptd 6159 . . 3 (𝐺 ∈ Grp → 𝑁 = (𝑥𝐵 ↦ (𝑁𝑥)))
2019cnveqd 5220 . 2 (𝐺 ∈ Grp → 𝑁 = (𝑥𝐵 ↦ (𝑁𝑥)))
2118feqmptd 6159 . 2 (𝐺 ∈ Grp → 𝑁 = (𝑦𝐵 ↦ (𝑁𝑦)))
2217, 20, 213eqtr4d 2654 1 (𝐺 ∈ Grp → 𝑁 = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  cmpt 4643  ccnv 5037  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  0gc0g 15923  Grpcgrp 17245  invgcminusg 17246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249
This theorem is referenced by:  grpinvf1o  17308  grpinvhmeo  21700
  Copyright terms: Public domain W3C validator