Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > funcringcsetcALTV2lem4 | Structured version Visualization version GIF version |
Description: Lemma 4 for funcringcsetcALTV2 41837. (Contributed by AV, 15-Feb-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
funcringcsetcALTV2.r | ⊢ 𝑅 = (RingCat‘𝑈) |
funcringcsetcALTV2.s | ⊢ 𝑆 = (SetCat‘𝑈) |
funcringcsetcALTV2.b | ⊢ 𝐵 = (Base‘𝑅) |
funcringcsetcALTV2.c | ⊢ 𝐶 = (Base‘𝑆) |
funcringcsetcALTV2.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
funcringcsetcALTV2.f | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) |
funcringcsetcALTV2.g | ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) |
Ref | Expression |
---|---|
funcringcsetcALTV2lem4 | ⊢ (𝜑 → 𝐺 Fn (𝐵 × 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2610 | . . 3 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))) | |
2 | ovex 6577 | . . . 4 ⊢ (𝑥 RingHom 𝑦) ∈ V | |
3 | id 22 | . . . . 5 ⊢ ((𝑥 RingHom 𝑦) ∈ V → (𝑥 RingHom 𝑦) ∈ V) | |
4 | 3 | resiexd 6385 | . . . 4 ⊢ ((𝑥 RingHom 𝑦) ∈ V → ( I ↾ (𝑥 RingHom 𝑦)) ∈ V) |
5 | 2, 4 | ax-mp 5 | . . 3 ⊢ ( I ↾ (𝑥 RingHom 𝑦)) ∈ V |
6 | 1, 5 | fnmpt2i 7128 | . 2 ⊢ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))) Fn (𝐵 × 𝐵) |
7 | funcringcsetcALTV2.g | . . 3 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦)))) | |
8 | 7 | fneq1d 5895 | . 2 ⊢ (𝜑 → (𝐺 Fn (𝐵 × 𝐵) ↔ (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ (𝑥 RingHom 𝑦))) Fn (𝐵 × 𝐵))) |
9 | 6, 8 | mpbiri 247 | 1 ⊢ (𝜑 → 𝐺 Fn (𝐵 × 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1475 ∈ wcel 1977 Vcvv 3173 ↦ cmpt 4643 I cid 4948 × cxp 5036 ↾ cres 5040 Fn wfn 5799 ‘cfv 5804 (class class class)co 6549 ↦ cmpt2 6551 WUnicwun 9401 Basecbs 15695 SetCatcsetc 16548 RingHom crh 18535 RingCatcringc 41795 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-1st 7059 df-2nd 7060 |
This theorem is referenced by: funcringcsetcALTV2 41837 |
Copyright terms: Public domain | W3C validator |