MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fullpropd Structured version   Visualization version   GIF version

Theorem fullpropd 16403
Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same full functors. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
fullpropd.1 (𝜑 → (Homf𝐴) = (Homf𝐵))
fullpropd.2 (𝜑 → (compf𝐴) = (compf𝐵))
fullpropd.3 (𝜑 → (Homf𝐶) = (Homf𝐷))
fullpropd.4 (𝜑 → (compf𝐶) = (compf𝐷))
fullpropd.a (𝜑𝐴𝑉)
fullpropd.b (𝜑𝐵𝑉)
fullpropd.c (𝜑𝐶𝑉)
fullpropd.d (𝜑𝐷𝑉)
Assertion
Ref Expression
fullpropd (𝜑 → (𝐴 Full 𝐶) = (𝐵 Full 𝐷))

Proof of Theorem fullpropd
Dummy variables 𝑓 𝑔 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfull 16391 . 2 Rel (𝐴 Full 𝐶)
2 relfull 16391 . 2 Rel (𝐵 Full 𝐷)
3 fullpropd.1 . . . . . . . 8 (𝜑 → (Homf𝐴) = (Homf𝐵))
43homfeqbas 16179 . . . . . . 7 (𝜑 → (Base‘𝐴) = (Base‘𝐵))
54adantr 480 . . . . . 6 ((𝜑𝑓(𝐴 Func 𝐶)𝑔) → (Base‘𝐴) = (Base‘𝐵))
65adantr 480 . . . . . . 7 (((𝜑𝑓(𝐴 Func 𝐶)𝑔) ∧ 𝑥 ∈ (Base‘𝐴)) → (Base‘𝐴) = (Base‘𝐵))
7 eqid 2610 . . . . . . . . 9 (Base‘𝐶) = (Base‘𝐶)
8 eqid 2610 . . . . . . . . 9 (Hom ‘𝐶) = (Hom ‘𝐶)
9 eqid 2610 . . . . . . . . 9 (Hom ‘𝐷) = (Hom ‘𝐷)
10 fullpropd.3 . . . . . . . . . 10 (𝜑 → (Homf𝐶) = (Homf𝐷))
1110ad3antrrr 762 . . . . . . . . 9 ((((𝜑𝑓(𝐴 Func 𝐶)𝑔) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (Homf𝐶) = (Homf𝐷))
12 eqid 2610 . . . . . . . . . . 11 (Base‘𝐴) = (Base‘𝐴)
13 simpllr 795 . . . . . . . . . . 11 ((((𝜑𝑓(𝐴 Func 𝐶)𝑔) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → 𝑓(𝐴 Func 𝐶)𝑔)
1412, 7, 13funcf1 16349 . . . . . . . . . 10 ((((𝜑𝑓(𝐴 Func 𝐶)𝑔) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → 𝑓:(Base‘𝐴)⟶(Base‘𝐶))
15 simplr 788 . . . . . . . . . 10 ((((𝜑𝑓(𝐴 Func 𝐶)𝑔) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → 𝑥 ∈ (Base‘𝐴))
1614, 15ffvelrnd 6268 . . . . . . . . 9 ((((𝜑𝑓(𝐴 Func 𝐶)𝑔) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑓𝑥) ∈ (Base‘𝐶))
17 simpr 476 . . . . . . . . . 10 ((((𝜑𝑓(𝐴 Func 𝐶)𝑔) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → 𝑦 ∈ (Base‘𝐴))
1814, 17ffvelrnd 6268 . . . . . . . . 9 ((((𝜑𝑓(𝐴 Func 𝐶)𝑔) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (𝑓𝑦) ∈ (Base‘𝐶))
197, 8, 9, 11, 16, 18homfeqval 16180 . . . . . . . 8 ((((𝜑𝑓(𝐴 Func 𝐶)𝑔) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → ((𝑓𝑥)(Hom ‘𝐶)(𝑓𝑦)) = ((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦)))
2019eqeq2d 2620 . . . . . . 7 ((((𝜑𝑓(𝐴 Func 𝐶)𝑔) ∧ 𝑥 ∈ (Base‘𝐴)) ∧ 𝑦 ∈ (Base‘𝐴)) → (ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝐶)(𝑓𝑦)) ↔ ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦))))
216, 20raleqbidva 3131 . . . . . 6 (((𝜑𝑓(𝐴 Func 𝐶)𝑔) ∧ 𝑥 ∈ (Base‘𝐴)) → (∀𝑦 ∈ (Base‘𝐴)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝐶)(𝑓𝑦)) ↔ ∀𝑦 ∈ (Base‘𝐵)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦))))
225, 21raleqbidva 3131 . . . . 5 ((𝜑𝑓(𝐴 Func 𝐶)𝑔) → (∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝐶)(𝑓𝑦)) ↔ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦))))
2322pm5.32da 671 . . . 4 (𝜑 → ((𝑓(𝐴 Func 𝐶)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝐶)(𝑓𝑦))) ↔ (𝑓(𝐴 Func 𝐶)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦)))))
24 fullpropd.2 . . . . . . 7 (𝜑 → (compf𝐴) = (compf𝐵))
25 fullpropd.4 . . . . . . 7 (𝜑 → (compf𝐶) = (compf𝐷))
26 fullpropd.a . . . . . . 7 (𝜑𝐴𝑉)
27 fullpropd.b . . . . . . 7 (𝜑𝐵𝑉)
28 fullpropd.c . . . . . . 7 (𝜑𝐶𝑉)
29 fullpropd.d . . . . . . 7 (𝜑𝐷𝑉)
303, 24, 10, 25, 26, 27, 28, 29funcpropd 16383 . . . . . 6 (𝜑 → (𝐴 Func 𝐶) = (𝐵 Func 𝐷))
3130breqd 4594 . . . . 5 (𝜑 → (𝑓(𝐴 Func 𝐶)𝑔𝑓(𝐵 Func 𝐷)𝑔))
3231anbi1d 737 . . . 4 (𝜑 → ((𝑓(𝐴 Func 𝐶)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦))) ↔ (𝑓(𝐵 Func 𝐷)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦)))))
3323, 32bitrd 267 . . 3 (𝜑 → ((𝑓(𝐴 Func 𝐶)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝐶)(𝑓𝑦))) ↔ (𝑓(𝐵 Func 𝐷)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦)))))
3412, 8isfull 16393 . . 3 (𝑓(𝐴 Full 𝐶)𝑔 ↔ (𝑓(𝐴 Func 𝐶)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐴)∀𝑦 ∈ (Base‘𝐴)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝐶)(𝑓𝑦))))
35 eqid 2610 . . . 4 (Base‘𝐵) = (Base‘𝐵)
3635, 9isfull 16393 . . 3 (𝑓(𝐵 Full 𝐷)𝑔 ↔ (𝑓(𝐵 Func 𝐷)𝑔 ∧ ∀𝑥 ∈ (Base‘𝐵)∀𝑦 ∈ (Base‘𝐵)ran (𝑥𝑔𝑦) = ((𝑓𝑥)(Hom ‘𝐷)(𝑓𝑦))))
3733, 34, 363bitr4g 302 . 2 (𝜑 → (𝑓(𝐴 Full 𝐶)𝑔𝑓(𝐵 Full 𝐷)𝑔))
381, 2, 37eqbrrdiv 5141 1 (𝜑 → (𝐴 Full 𝐶) = (𝐵 Full 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896   class class class wbr 4583  ran crn 5039  cfv 5804  (class class class)co 6549  Basecbs 15695  Hom chom 15779  Homf chomf 16150  compfccomf 16151   Func cfunc 16337   Full cful 16385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-map 7746  df-ixp 7795  df-cat 16152  df-cid 16153  df-homf 16154  df-comf 16155  df-func 16341  df-full 16387
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator