MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fullpropd Structured version   Unicode version

Theorem fullpropd 14833
Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same full functors. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
fullpropd.1  |-  ( ph  ->  ( Hom f  `  A )  =  ( Hom f  `  B ) )
fullpropd.2  |-  ( ph  ->  (compf `  A )  =  (compf `  B ) )
fullpropd.3  |-  ( ph  ->  ( Hom f  `  C )  =  ( Hom f  `  D ) )
fullpropd.4  |-  ( ph  ->  (compf `  C )  =  (compf `  D ) )
fullpropd.a  |-  ( ph  ->  A  e.  V )
fullpropd.b  |-  ( ph  ->  B  e.  V )
fullpropd.c  |-  ( ph  ->  C  e.  V )
fullpropd.d  |-  ( ph  ->  D  e.  V )
Assertion
Ref Expression
fullpropd  |-  ( ph  ->  ( A Full  C )  =  ( B Full  D
) )

Proof of Theorem fullpropd
Dummy variables  f 
g  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfull 14821 . 2  |-  Rel  ( A Full  C )
2 relfull 14821 . 2  |-  Rel  ( B Full  D )
3 fullpropd.1 . . . . . . . 8  |-  ( ph  ->  ( Hom f  `  A )  =  ( Hom f  `  B ) )
43homfeqbas 14638 . . . . . . 7  |-  ( ph  ->  ( Base `  A
)  =  ( Base `  B ) )
54adantr 465 . . . . . 6  |-  ( (
ph  /\  f ( A  Func  C ) g )  ->  ( Base `  A )  =  (
Base `  B )
)
65adantr 465 . . . . . . 7  |-  ( ( ( ph  /\  f
( A  Func  C
) g )  /\  x  e.  ( Base `  A ) )  -> 
( Base `  A )  =  ( Base `  B
) )
7 eqid 2443 . . . . . . . . 9  |-  ( Base `  C )  =  (
Base `  C )
8 eqid 2443 . . . . . . . . 9  |-  ( Hom  `  C )  =  ( Hom  `  C )
9 eqid 2443 . . . . . . . . 9  |-  ( Hom  `  D )  =  ( Hom  `  D )
10 fullpropd.3 . . . . . . . . . 10  |-  ( ph  ->  ( Hom f  `  C )  =  ( Hom f  `  D ) )
1110ad3antrrr 729 . . . . . . . . 9  |-  ( ( ( ( ph  /\  f ( A  Func  C ) g )  /\  x  e.  ( Base `  A ) )  /\  y  e.  ( Base `  A ) )  -> 
( Hom f  `  C )  =  ( Hom f  `  D ) )
12 eqid 2443 . . . . . . . . . . 11  |-  ( Base `  A )  =  (
Base `  A )
13 simpllr 758 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  f ( A  Func  C ) g )  /\  x  e.  ( Base `  A ) )  /\  y  e.  ( Base `  A ) )  -> 
f ( A  Func  C ) g )
1412, 7, 13funcf1 14779 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  f ( A  Func  C ) g )  /\  x  e.  ( Base `  A ) )  /\  y  e.  ( Base `  A ) )  -> 
f : ( Base `  A ) --> ( Base `  C ) )
15 simplr 754 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  f ( A  Func  C ) g )  /\  x  e.  ( Base `  A ) )  /\  y  e.  ( Base `  A ) )  ->  x  e.  ( Base `  A ) )
1614, 15ffvelrnd 5847 . . . . . . . . 9  |-  ( ( ( ( ph  /\  f ( A  Func  C ) g )  /\  x  e.  ( Base `  A ) )  /\  y  e.  ( Base `  A ) )  -> 
( f `  x
)  e.  ( Base `  C ) )
17 simpr 461 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  f ( A  Func  C ) g )  /\  x  e.  ( Base `  A ) )  /\  y  e.  ( Base `  A ) )  -> 
y  e.  ( Base `  A ) )
1814, 17ffvelrnd 5847 . . . . . . . . 9  |-  ( ( ( ( ph  /\  f ( A  Func  C ) g )  /\  x  e.  ( Base `  A ) )  /\  y  e.  ( Base `  A ) )  -> 
( f `  y
)  e.  ( Base `  C ) )
197, 8, 9, 11, 16, 18homfeqval 14639 . . . . . . . 8  |-  ( ( ( ( ph  /\  f ( A  Func  C ) g )  /\  x  e.  ( Base `  A ) )  /\  y  e.  ( Base `  A ) )  -> 
( ( f `  x ) ( Hom  `  C ) ( f `
 y ) )  =  ( ( f `
 x ) ( Hom  `  D )
( f `  y
) ) )
2019eqeq2d 2454 . . . . . . 7  |-  ( ( ( ( ph  /\  f ( A  Func  C ) g )  /\  x  e.  ( Base `  A ) )  /\  y  e.  ( Base `  A ) )  -> 
( ran  ( x
g y )  =  ( ( f `  x ) ( Hom  `  C ) ( f `
 y ) )  <->  ran  ( x g y )  =  ( ( f `  x ) ( Hom  `  D
) ( f `  y ) ) ) )
216, 20raleqbidva 2936 . . . . . 6  |-  ( ( ( ph  /\  f
( A  Func  C
) g )  /\  x  e.  ( Base `  A ) )  -> 
( A. y  e.  ( Base `  A
) ran  ( x
g y )  =  ( ( f `  x ) ( Hom  `  C ) ( f `
 y ) )  <->  A. y  e.  ( Base `  B ) ran  ( x g y )  =  ( ( f `  x ) ( Hom  `  D
) ( f `  y ) ) ) )
225, 21raleqbidva 2936 . . . . 5  |-  ( (
ph  /\  f ( A  Func  C ) g )  ->  ( A. x  e.  ( Base `  A ) A. y  e.  ( Base `  A
) ran  ( x
g y )  =  ( ( f `  x ) ( Hom  `  C ) ( f `
 y ) )  <->  A. x  e.  ( Base `  B ) A. y  e.  ( Base `  B ) ran  (
x g y )  =  ( ( f `
 x ) ( Hom  `  D )
( f `  y
) ) ) )
2322pm5.32da 641 . . . 4  |-  ( ph  ->  ( ( f ( A  Func  C )
g  /\  A. x  e.  ( Base `  A
) A. y  e.  ( Base `  A
) ran  ( x
g y )  =  ( ( f `  x ) ( Hom  `  C ) ( f `
 y ) ) )  <->  ( f ( A  Func  C )
g  /\  A. x  e.  ( Base `  B
) A. y  e.  ( Base `  B
) ran  ( x
g y )  =  ( ( f `  x ) ( Hom  `  D ) ( f `
 y ) ) ) ) )
24 fullpropd.2 . . . . . . 7  |-  ( ph  ->  (compf `  A )  =  (compf `  B ) )
25 fullpropd.4 . . . . . . 7  |-  ( ph  ->  (compf `  C )  =  (compf `  D ) )
26 fullpropd.a . . . . . . 7  |-  ( ph  ->  A  e.  V )
27 fullpropd.b . . . . . . 7  |-  ( ph  ->  B  e.  V )
28 fullpropd.c . . . . . . 7  |-  ( ph  ->  C  e.  V )
29 fullpropd.d . . . . . . 7  |-  ( ph  ->  D  e.  V )
303, 24, 10, 25, 26, 27, 28, 29funcpropd 14813 . . . . . 6  |-  ( ph  ->  ( A  Func  C
)  =  ( B 
Func  D ) )
3130breqd 4306 . . . . 5  |-  ( ph  ->  ( f ( A 
Func  C ) g  <->  f ( B  Func  D ) g ) )
3231anbi1d 704 . . . 4  |-  ( ph  ->  ( ( f ( A  Func  C )
g  /\  A. x  e.  ( Base `  B
) A. y  e.  ( Base `  B
) ran  ( x
g y )  =  ( ( f `  x ) ( Hom  `  D ) ( f `
 y ) ) )  <->  ( f ( B  Func  D )
g  /\  A. x  e.  ( Base `  B
) A. y  e.  ( Base `  B
) ran  ( x
g y )  =  ( ( f `  x ) ( Hom  `  D ) ( f `
 y ) ) ) ) )
3323, 32bitrd 253 . . 3  |-  ( ph  ->  ( ( f ( A  Func  C )
g  /\  A. x  e.  ( Base `  A
) A. y  e.  ( Base `  A
) ran  ( x
g y )  =  ( ( f `  x ) ( Hom  `  C ) ( f `
 y ) ) )  <->  ( f ( B  Func  D )
g  /\  A. x  e.  ( Base `  B
) A. y  e.  ( Base `  B
) ran  ( x
g y )  =  ( ( f `  x ) ( Hom  `  D ) ( f `
 y ) ) ) ) )
3412, 8isfull 14823 . . 3  |-  ( f ( A Full  C ) g  <->  ( f ( A  Func  C )
g  /\  A. x  e.  ( Base `  A
) A. y  e.  ( Base `  A
) ran  ( x
g y )  =  ( ( f `  x ) ( Hom  `  C ) ( f `
 y ) ) ) )
35 eqid 2443 . . . 4  |-  ( Base `  B )  =  (
Base `  B )
3635, 9isfull 14823 . . 3  |-  ( f ( B Full  D ) g  <->  ( f ( B  Func  D )
g  /\  A. x  e.  ( Base `  B
) A. y  e.  ( Base `  B
) ran  ( x
g y )  =  ( ( f `  x ) ( Hom  `  D ) ( f `
 y ) ) ) )
3733, 34, 363bitr4g 288 . 2  |-  ( ph  ->  ( f ( A Full 
C ) g  <->  f ( B Full  D ) g ) )
381, 2, 37eqbrrdiv 4941 1  |-  ( ph  ->  ( A Full  C )  =  ( B Full  D
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2718   class class class wbr 4295   ran crn 4844   ` cfv 5421  (class class class)co 6094   Basecbs 14177   Hom chom 14252   Hom f chomf 14607  compfccomf 14608    Func cfunc 14767   Full cful 14815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4406  ax-sep 4416  ax-nul 4424  ax-pow 4473  ax-pr 4534  ax-un 6375
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2571  df-ne 2611  df-ral 2723  df-rex 2724  df-reu 2725  df-rab 2727  df-v 2977  df-sbc 3190  df-csb 3292  df-dif 3334  df-un 3336  df-in 3338  df-ss 3345  df-nul 3641  df-if 3795  df-pw 3865  df-sn 3881  df-pr 3883  df-op 3887  df-uni 4095  df-iun 4176  df-br 4296  df-opab 4354  df-mpt 4355  df-id 4639  df-xp 4849  df-rel 4850  df-cnv 4851  df-co 4852  df-dm 4853  df-rn 4854  df-res 4855  df-ima 4856  df-iota 5384  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-riota 6055  df-ov 6097  df-oprab 6098  df-mpt2 6099  df-1st 6580  df-2nd 6581  df-map 7219  df-ixp 7267  df-cat 14609  df-cid 14610  df-homf 14611  df-comf 14612  df-func 14771  df-full 14817
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator