Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsneq Structured version   Visualization version   GIF version

Theorem fsneq 38393
Description: Equality condition for two functions defined on a singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
fsneq.a (𝜑𝐴𝑉)
fsneq.b 𝐵 = {𝐴}
fsneq.f (𝜑𝐹 Fn 𝐵)
fsneq.g (𝜑𝐺 Fn 𝐵)
Assertion
Ref Expression
fsneq (𝜑 → (𝐹 = 𝐺 ↔ (𝐹𝐴) = (𝐺𝐴)))

Proof of Theorem fsneq
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fsneq.f . . 3 (𝜑𝐹 Fn 𝐵)
2 fsneq.g . . 3 (𝜑𝐺 Fn 𝐵)
3 eqfnfv 6219 . . 3 ((𝐹 Fn 𝐵𝐺 Fn 𝐵) → (𝐹 = 𝐺 ↔ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)))
41, 2, 3syl2anc 691 . 2 (𝜑 → (𝐹 = 𝐺 ↔ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)))
5 fsneq.a . . . . . . . 8 (𝜑𝐴𝑉)
6 snidg 4153 . . . . . . . 8 (𝐴𝑉𝐴 ∈ {𝐴})
75, 6syl 17 . . . . . . 7 (𝜑𝐴 ∈ {𝐴})
8 fsneq.b . . . . . . . . 9 𝐵 = {𝐴}
98eqcomi 2619 . . . . . . . 8 {𝐴} = 𝐵
109a1i 11 . . . . . . 7 (𝜑 → {𝐴} = 𝐵)
117, 10eleqtrd 2690 . . . . . 6 (𝜑𝐴𝐵)
1211adantr 480 . . . . 5 ((𝜑 ∧ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)) → 𝐴𝐵)
13 simpr 476 . . . . 5 ((𝜑 ∧ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)) → ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥))
14 fveq2 6103 . . . . . . 7 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
15 fveq2 6103 . . . . . . 7 (𝑥 = 𝐴 → (𝐺𝑥) = (𝐺𝐴))
1614, 15eqeq12d 2625 . . . . . 6 (𝑥 = 𝐴 → ((𝐹𝑥) = (𝐺𝑥) ↔ (𝐹𝐴) = (𝐺𝐴)))
1716rspcva 3280 . . . . 5 ((𝐴𝐵 ∧ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)) → (𝐹𝐴) = (𝐺𝐴))
1812, 13, 17syl2anc 691 . . . 4 ((𝜑 ∧ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)) → (𝐹𝐴) = (𝐺𝐴))
1918ex 449 . . 3 (𝜑 → (∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥) → (𝐹𝐴) = (𝐺𝐴)))
20 simpl 472 . . . . . . 7 (((𝐹𝐴) = (𝐺𝐴) ∧ 𝑥𝐵) → (𝐹𝐴) = (𝐺𝐴))
218eleq2i 2680 . . . . . . . . . . 11 (𝑥𝐵𝑥 ∈ {𝐴})
2221biimpi 205 . . . . . . . . . 10 (𝑥𝐵𝑥 ∈ {𝐴})
23 velsn 4141 . . . . . . . . . 10 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
2422, 23sylib 207 . . . . . . . . 9 (𝑥𝐵𝑥 = 𝐴)
2524fveq2d 6107 . . . . . . . 8 (𝑥𝐵 → (𝐹𝑥) = (𝐹𝐴))
2625adantl 481 . . . . . . 7 (((𝐹𝐴) = (𝐺𝐴) ∧ 𝑥𝐵) → (𝐹𝑥) = (𝐹𝐴))
2724fveq2d 6107 . . . . . . . 8 (𝑥𝐵 → (𝐺𝑥) = (𝐺𝐴))
2827adantl 481 . . . . . . 7 (((𝐹𝐴) = (𝐺𝐴) ∧ 𝑥𝐵) → (𝐺𝑥) = (𝐺𝐴))
2920, 26, 283eqtr4d 2654 . . . . . 6 (((𝐹𝐴) = (𝐺𝐴) ∧ 𝑥𝐵) → (𝐹𝑥) = (𝐺𝑥))
3029adantll 746 . . . . 5 (((𝜑 ∧ (𝐹𝐴) = (𝐺𝐴)) ∧ 𝑥𝐵) → (𝐹𝑥) = (𝐺𝑥))
3130ralrimiva 2949 . . . 4 ((𝜑 ∧ (𝐹𝐴) = (𝐺𝐴)) → ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥))
3231ex 449 . . 3 (𝜑 → ((𝐹𝐴) = (𝐺𝐴) → ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)))
3319, 32impbid 201 . 2 (𝜑 → (∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥) ↔ (𝐹𝐴) = (𝐺𝐴)))
344, 33bitrd 267 1 (𝜑 → (𝐹 = 𝐺 ↔ (𝐹𝐴) = (𝐺𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  {csn 4125   Fn wfn 5799  cfv 5804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-fv 5812
This theorem is referenced by:  fsneqrn  38398  unirnmapsn  38401
  Copyright terms: Public domain W3C validator