Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frrlem5d Structured version   Visualization version   GIF version

Theorem frrlem5d 31031
Description: Lemma for founded recursion. The domain of the union of a subset of 𝐵 is a subset of 𝐴. (Contributed by Paul Chapman, 29-Apr-2012.)
Hypotheses
Ref Expression
frrlem5.1 𝑅 Fr 𝐴
frrlem5.2 𝑅 Se 𝐴
frrlem5.3 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))))}
Assertion
Ref Expression
frrlem5d (𝐶𝐵 → dom 𝐶𝐴)
Distinct variable groups:   𝐴,𝑓,𝑥,𝑦   𝑓,𝐺,𝑥,𝑦   𝑅,𝑓,𝑥,𝑦   𝑥,𝐵
Allowed substitution hints:   𝐵(𝑦,𝑓)   𝐶(𝑥,𝑦,𝑓)

Proof of Theorem frrlem5d
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 dmuni 5256 . 2 dom 𝐶 = 𝑔𝐶 dom 𝑔
2 ssel 3562 . . . . 5 (𝐶𝐵 → (𝑔𝐶𝑔𝐵))
3 frrlem5.3 . . . . . 6 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))))}
43frrlem3 31026 . . . . 5 (𝑔𝐵 → dom 𝑔𝐴)
52, 4syl6 34 . . . 4 (𝐶𝐵 → (𝑔𝐶 → dom 𝑔𝐴))
65ralrimiv 2948 . . 3 (𝐶𝐵 → ∀𝑔𝐶 dom 𝑔𝐴)
7 iunss 4497 . . 3 ( 𝑔𝐶 dom 𝑔𝐴 ↔ ∀𝑔𝐶 dom 𝑔𝐴)
86, 7sylibr 223 . 2 (𝐶𝐵 𝑔𝐶 dom 𝑔𝐴)
91, 8syl5eqss 3612 1 (𝐶𝐵 → dom 𝐶𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  {cab 2596  wral 2896  wss 3540   cuni 4372   ciun 4455   Fr wfr 4994   Se wse 4995  dom cdm 5038  cres 5040  Predcpred 5596   Fn wfn 5799  cfv 5804  (class class class)co 6549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-iota 5768  df-fun 5806  df-fn 5807  df-fv 5812  df-ov 6552
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator