Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frrlem5e Structured version   Visualization version   GIF version

Theorem frrlem5e 31032
Description: Lemma for founded recursion. The domain of the union of a subset of 𝐵 is closed under predecessors. (Contributed by Paul Chapman, 1-May-2012.)
Hypotheses
Ref Expression
frrlem5.1 𝑅 Fr 𝐴
frrlem5.2 𝑅 Se 𝐴
frrlem5.3 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))))}
Assertion
Ref Expression
frrlem5e (𝐶𝐵 → (𝑋 ∈ dom 𝐶 → Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝐶))
Distinct variable groups:   𝐴,𝑓,𝑥,𝑦   𝑓,𝐺,𝑥,𝑦   𝑅,𝑓,𝑥,𝑦   𝑥,𝐵
Allowed substitution hints:   𝐵(𝑦,𝑓)   𝐶(𝑥,𝑦,𝑓)   𝑋(𝑥,𝑦,𝑓)

Proof of Theorem frrlem5e
Dummy variables 𝑧 𝑡 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmuni 5256 . . . 4 dom 𝐶 = 𝑧𝐶 dom 𝑧
21eleq2i 2680 . . 3 (𝑋 ∈ dom 𝐶𝑋 𝑧𝐶 dom 𝑧)
3 eliun 4460 . . 3 (𝑋 𝑧𝐶 dom 𝑧 ↔ ∃𝑧𝐶 𝑋 ∈ dom 𝑧)
42, 3bitri 263 . 2 (𝑋 ∈ dom 𝐶 ↔ ∃𝑧𝐶 𝑋 ∈ dom 𝑧)
5 ssel2 3563 . . . . 5 ((𝐶𝐵𝑧𝐶) → 𝑧𝐵)
6 frrlem5.3 . . . . . . . 8 𝐵 = {𝑓 ∣ ∃𝑥(𝑓 Fn 𝑥 ∧ (𝑥𝐴 ∧ ∀𝑦𝑥 Pred(𝑅, 𝐴, 𝑦) ⊆ 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = (𝑦𝐺(𝑓 ↾ Pred(𝑅, 𝐴, 𝑦)))))}
76frrlem1 31024 . . . . . . 7 𝐵 = {𝑧 ∣ ∃𝑤(𝑧 Fn 𝑤 ∧ (𝑤𝐴 ∧ ∀𝑡𝑤 Pred(𝑅, 𝐴, 𝑡) ⊆ 𝑤 ∧ ∀𝑡𝑤 (𝑧𝑡) = (𝑡𝐺(𝑧 ↾ Pred(𝑅, 𝐴, 𝑡)))))}
87abeq2i 2722 . . . . . 6 (𝑧𝐵 ↔ ∃𝑤(𝑧 Fn 𝑤 ∧ (𝑤𝐴 ∧ ∀𝑡𝑤 Pred(𝑅, 𝐴, 𝑡) ⊆ 𝑤 ∧ ∀𝑡𝑤 (𝑧𝑡) = (𝑡𝐺(𝑧 ↾ Pred(𝑅, 𝐴, 𝑡))))))
9 fndm 5904 . . . . . . . . 9 (𝑧 Fn 𝑤 → dom 𝑧 = 𝑤)
10 predeq3 5601 . . . . . . . . . . . . 13 (𝑡 = 𝑋 → Pred(𝑅, 𝐴, 𝑡) = Pred(𝑅, 𝐴, 𝑋))
1110sseq1d 3595 . . . . . . . . . . . 12 (𝑡 = 𝑋 → (Pred(𝑅, 𝐴, 𝑡) ⊆ 𝑤 ↔ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝑤))
1211rspccv 3279 . . . . . . . . . . 11 (∀𝑡𝑤 Pred(𝑅, 𝐴, 𝑡) ⊆ 𝑤 → (𝑋𝑤 → Pred(𝑅, 𝐴, 𝑋) ⊆ 𝑤))
13123ad2ant2 1076 . . . . . . . . . 10 ((𝑤𝐴 ∧ ∀𝑡𝑤 Pred(𝑅, 𝐴, 𝑡) ⊆ 𝑤 ∧ ∀𝑡𝑤 (𝑧𝑡) = (𝑡𝐺(𝑧 ↾ Pred(𝑅, 𝐴, 𝑡)))) → (𝑋𝑤 → Pred(𝑅, 𝐴, 𝑋) ⊆ 𝑤))
14 eleq2 2677 . . . . . . . . . . 11 (dom 𝑧 = 𝑤 → (𝑋 ∈ dom 𝑧𝑋𝑤))
15 sseq2 3590 . . . . . . . . . . 11 (dom 𝑧 = 𝑤 → (Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝑧 ↔ Pred(𝑅, 𝐴, 𝑋) ⊆ 𝑤))
1614, 15imbi12d 333 . . . . . . . . . 10 (dom 𝑧 = 𝑤 → ((𝑋 ∈ dom 𝑧 → Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝑧) ↔ (𝑋𝑤 → Pred(𝑅, 𝐴, 𝑋) ⊆ 𝑤)))
1713, 16syl5ibr 235 . . . . . . . . 9 (dom 𝑧 = 𝑤 → ((𝑤𝐴 ∧ ∀𝑡𝑤 Pred(𝑅, 𝐴, 𝑡) ⊆ 𝑤 ∧ ∀𝑡𝑤 (𝑧𝑡) = (𝑡𝐺(𝑧 ↾ Pred(𝑅, 𝐴, 𝑡)))) → (𝑋 ∈ dom 𝑧 → Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝑧)))
189, 17syl 17 . . . . . . . 8 (𝑧 Fn 𝑤 → ((𝑤𝐴 ∧ ∀𝑡𝑤 Pred(𝑅, 𝐴, 𝑡) ⊆ 𝑤 ∧ ∀𝑡𝑤 (𝑧𝑡) = (𝑡𝐺(𝑧 ↾ Pred(𝑅, 𝐴, 𝑡)))) → (𝑋 ∈ dom 𝑧 → Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝑧)))
1918imp 444 . . . . . . 7 ((𝑧 Fn 𝑤 ∧ (𝑤𝐴 ∧ ∀𝑡𝑤 Pred(𝑅, 𝐴, 𝑡) ⊆ 𝑤 ∧ ∀𝑡𝑤 (𝑧𝑡) = (𝑡𝐺(𝑧 ↾ Pred(𝑅, 𝐴, 𝑡))))) → (𝑋 ∈ dom 𝑧 → Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝑧))
2019exlimiv 1845 . . . . . 6 (∃𝑤(𝑧 Fn 𝑤 ∧ (𝑤𝐴 ∧ ∀𝑡𝑤 Pred(𝑅, 𝐴, 𝑡) ⊆ 𝑤 ∧ ∀𝑡𝑤 (𝑧𝑡) = (𝑡𝐺(𝑧 ↾ Pred(𝑅, 𝐴, 𝑡))))) → (𝑋 ∈ dom 𝑧 → Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝑧))
218, 20sylbi 206 . . . . 5 (𝑧𝐵 → (𝑋 ∈ dom 𝑧 → Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝑧))
225, 21syl 17 . . . 4 ((𝐶𝐵𝑧𝐶) → (𝑋 ∈ dom 𝑧 → Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝑧))
23 dmeq 5246 . . . . . . . . . 10 (𝑤 = 𝑧 → dom 𝑤 = dom 𝑧)
2423sseq2d 3596 . . . . . . . . 9 (𝑤 = 𝑧 → (Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝑤 ↔ Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝑧))
2524rspcev 3282 . . . . . . . 8 ((𝑧𝐶 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝑧) → ∃𝑤𝐶 Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝑤)
26 ssiun 4498 . . . . . . . 8 (∃𝑤𝐶 Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝑤 → Pred(𝑅, 𝐴, 𝑋) ⊆ 𝑤𝐶 dom 𝑤)
2725, 26syl 17 . . . . . . 7 ((𝑧𝐶 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝑧) → Pred(𝑅, 𝐴, 𝑋) ⊆ 𝑤𝐶 dom 𝑤)
28 dmuni 5256 . . . . . . 7 dom 𝐶 = 𝑤𝐶 dom 𝑤
2927, 28syl6sseqr 3615 . . . . . 6 ((𝑧𝐶 ∧ Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝑧) → Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝐶)
3029ex 449 . . . . 5 (𝑧𝐶 → (Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝑧 → Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝐶))
3130adantl 481 . . . 4 ((𝐶𝐵𝑧𝐶) → (Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝑧 → Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝐶))
3222, 31syld 46 . . 3 ((𝐶𝐵𝑧𝐶) → (𝑋 ∈ dom 𝑧 → Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝐶))
3332rexlimdva 3013 . 2 (𝐶𝐵 → (∃𝑧𝐶 𝑋 ∈ dom 𝑧 → Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝐶))
344, 33syl5bi 231 1 (𝐶𝐵 → (𝑋 ∈ dom 𝐶 → Pred(𝑅, 𝐴, 𝑋) ⊆ dom 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  {cab 2596  wral 2896  wrex 2897  wss 3540   cuni 4372   ciun 4455   Fr wfr 4994   Se wse 4995  dom cdm 5038  cres 5040  Predcpred 5596   Fn wfn 5799  cfv 5804  (class class class)co 6549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-iota 5768  df-fun 5806  df-fn 5807  df-fv 5812  df-ov 6552
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator