Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fresf1o Structured version   Visualization version   GIF version

Theorem fresf1o 28815
Description: Conditions for a restriction to be a one-to-one onto function. (Contributed by Thierry Arnoux, 7-Dec-2016.)
Assertion
Ref Expression
fresf1o ((Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun (𝐹𝐶)) → (𝐹 ↾ (𝐹𝐶)):(𝐹𝐶)–1-1-onto𝐶)

Proof of Theorem fresf1o
StepHypRef Expression
1 funfn 5833 . . . . . . . 8 (Fun (𝐹𝐶) ↔ (𝐹𝐶) Fn dom (𝐹𝐶))
21biimpi 205 . . . . . . 7 (Fun (𝐹𝐶) → (𝐹𝐶) Fn dom (𝐹𝐶))
323ad2ant3 1077 . . . . . 6 ((Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun (𝐹𝐶)) → (𝐹𝐶) Fn dom (𝐹𝐶))
4 simp2 1055 . . . . . . . . 9 ((Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun (𝐹𝐶)) → 𝐶 ⊆ ran 𝐹)
5 df-rn 5049 . . . . . . . . 9 ran 𝐹 = dom 𝐹
64, 5syl6sseq 3614 . . . . . . . 8 ((Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun (𝐹𝐶)) → 𝐶 ⊆ dom 𝐹)
7 ssdmres 5340 . . . . . . . 8 (𝐶 ⊆ dom 𝐹 ↔ dom (𝐹𝐶) = 𝐶)
86, 7sylib 207 . . . . . . 7 ((Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun (𝐹𝐶)) → dom (𝐹𝐶) = 𝐶)
98fneq2d 5896 . . . . . 6 ((Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun (𝐹𝐶)) → ((𝐹𝐶) Fn dom (𝐹𝐶) ↔ (𝐹𝐶) Fn 𝐶))
103, 9mpbid 221 . . . . 5 ((Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun (𝐹𝐶)) → (𝐹𝐶) Fn 𝐶)
11 simp1 1054 . . . . . . 7 ((Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun (𝐹𝐶)) → Fun 𝐹)
12 funres 5843 . . . . . . 7 (Fun 𝐹 → Fun (𝐹 ↾ (𝐹𝐶)))
1311, 12syl 17 . . . . . 6 ((Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun (𝐹𝐶)) → Fun (𝐹 ↾ (𝐹𝐶)))
14 funcnvres2 5883 . . . . . . . 8 (Fun 𝐹(𝐹𝐶) = (𝐹 ↾ (𝐹𝐶)))
1511, 14syl 17 . . . . . . 7 ((Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun (𝐹𝐶)) → (𝐹𝐶) = (𝐹 ↾ (𝐹𝐶)))
1615funeqd 5825 . . . . . 6 ((Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun (𝐹𝐶)) → (Fun (𝐹𝐶) ↔ Fun (𝐹 ↾ (𝐹𝐶))))
1713, 16mpbird 246 . . . . 5 ((Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun (𝐹𝐶)) → Fun (𝐹𝐶))
18 df-ima 5051 . . . . . . 7 (𝐹𝐶) = ran (𝐹𝐶)
1918eqcomi 2619 . . . . . 6 ran (𝐹𝐶) = (𝐹𝐶)
2019a1i 11 . . . . 5 ((Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun (𝐹𝐶)) → ran (𝐹𝐶) = (𝐹𝐶))
2110, 17, 203jca 1235 . . . 4 ((Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun (𝐹𝐶)) → ((𝐹𝐶) Fn 𝐶 ∧ Fun (𝐹𝐶) ∧ ran (𝐹𝐶) = (𝐹𝐶)))
22 dff1o2 6055 . . . 4 ((𝐹𝐶):𝐶1-1-onto→(𝐹𝐶) ↔ ((𝐹𝐶) Fn 𝐶 ∧ Fun (𝐹𝐶) ∧ ran (𝐹𝐶) = (𝐹𝐶)))
2321, 22sylibr 223 . . 3 ((Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun (𝐹𝐶)) → (𝐹𝐶):𝐶1-1-onto→(𝐹𝐶))
24 f1ocnv 6062 . . 3 ((𝐹𝐶):𝐶1-1-onto→(𝐹𝐶) → (𝐹𝐶):(𝐹𝐶)–1-1-onto𝐶)
2523, 24syl 17 . 2 ((Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun (𝐹𝐶)) → (𝐹𝐶):(𝐹𝐶)–1-1-onto𝐶)
26 f1oeq1 6040 . . 3 ((𝐹𝐶) = (𝐹 ↾ (𝐹𝐶)) → ((𝐹𝐶):(𝐹𝐶)–1-1-onto𝐶 ↔ (𝐹 ↾ (𝐹𝐶)):(𝐹𝐶)–1-1-onto𝐶))
2711, 14, 263syl 18 . 2 ((Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun (𝐹𝐶)) → ((𝐹𝐶):(𝐹𝐶)–1-1-onto𝐶 ↔ (𝐹 ↾ (𝐹𝐶)):(𝐹𝐶)–1-1-onto𝐶))
2825, 27mpbid 221 1 ((Fun 𝐹𝐶 ⊆ ran 𝐹 ∧ Fun (𝐹𝐶)) → (𝐹 ↾ (𝐹𝐶)):(𝐹𝐶)–1-1-onto𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  w3a 1031   = wceq 1475  wss 3540  ccnv 5037  dom cdm 5038  ran crn 5039  cres 5040  cima 5041  Fun wfun 5798   Fn wfn 5799  1-1-ontowf1o 5803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811
This theorem is referenced by:  carsggect  29707
  Copyright terms: Public domain W3C validator