Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnom Structured version   Visualization version   GIF version

Theorem fnom 7476
 Description: Functionality and domain of ordinal multiplication. (Contributed by NM, 26-Aug-1995.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
fnom ·𝑜 Fn (On × On)

Proof of Theorem fnom
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-omul 7452 . 2 ·𝑜 = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ (𝑧 +𝑜 𝑥)), ∅)‘𝑦))
2 fvex 6113 . 2 (rec((𝑧 ∈ V ↦ (𝑧 +𝑜 𝑥)), ∅)‘𝑦) ∈ V
31, 2fnmpt2i 7128 1 ·𝑜 Fn (On × On)
 Colors of variables: wff setvar class Syntax hints:  Vcvv 3173  ∅c0 3874   ↦ cmpt 4643   × cxp 5036  Oncon0 5640   Fn wfn 5799  ‘cfv 5804  (class class class)co 6549  reccrdg 7392   +𝑜 coa 7444   ·𝑜 comu 7445 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-omul 7452 This theorem is referenced by:  om0x  7486  dmmulpi  9592
 Copyright terms: Public domain W3C validator