Mathbox for Jeff Hoffman |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > findabrcl | Structured version Visualization version GIF version |
Description: Please add description here. (Contributed by Jeff Hoffman, 16-Feb-2008.) (Revised by Mario Carneiro, 11-Sep-2015.) |
Ref | Expression |
---|---|
findabrcl.1 | ⊢ (𝑧 ∈ 𝑃 → (𝐺‘𝑧) ∈ 𝑃) |
Ref | Expression |
---|---|
findabrcl | ⊢ ((𝐶 ∈ ω ∧ 𝐴 ∈ 𝑃) → ((𝑥 ∈ V ↦ (rec(𝐺, 𝐴)‘𝑥))‘𝐶) ∈ 𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3185 | . . . 4 ⊢ (𝐶 ∈ ω → 𝐶 ∈ V) | |
2 | fveq2 6103 | . . . . 5 ⊢ (𝑥 = 𝐶 → (rec(𝐺, 𝐴)‘𝑥) = (rec(𝐺, 𝐴)‘𝐶)) | |
3 | eqid 2610 | . . . . 5 ⊢ (𝑥 ∈ V ↦ (rec(𝐺, 𝐴)‘𝑥)) = (𝑥 ∈ V ↦ (rec(𝐺, 𝐴)‘𝑥)) | |
4 | fvex 6113 | . . . . 5 ⊢ (rec(𝐺, 𝐴)‘𝐶) ∈ V | |
5 | 2, 3, 4 | fvmpt 6191 | . . . 4 ⊢ (𝐶 ∈ V → ((𝑥 ∈ V ↦ (rec(𝐺, 𝐴)‘𝑥))‘𝐶) = (rec(𝐺, 𝐴)‘𝐶)) |
6 | 1, 5 | syl 17 | . . 3 ⊢ (𝐶 ∈ ω → ((𝑥 ∈ V ↦ (rec(𝐺, 𝐴)‘𝑥))‘𝐶) = (rec(𝐺, 𝐴)‘𝐶)) |
7 | 6 | adantr 480 | . 2 ⊢ ((𝐶 ∈ ω ∧ 𝐴 ∈ 𝑃) → ((𝑥 ∈ V ↦ (rec(𝐺, 𝐴)‘𝑥))‘𝐶) = (rec(𝐺, 𝐴)‘𝐶)) |
8 | findabrcl.1 | . . . 4 ⊢ (𝑧 ∈ 𝑃 → (𝐺‘𝑧) ∈ 𝑃) | |
9 | 8 | findreccl 31622 | . . 3 ⊢ (𝐶 ∈ ω → (𝐴 ∈ 𝑃 → (rec(𝐺, 𝐴)‘𝐶) ∈ 𝑃)) |
10 | 9 | imp 444 | . 2 ⊢ ((𝐶 ∈ ω ∧ 𝐴 ∈ 𝑃) → (rec(𝐺, 𝐴)‘𝐶) ∈ 𝑃) |
11 | 7, 10 | eqeltrd 2688 | 1 ⊢ ((𝐶 ∈ ω ∧ 𝐴 ∈ 𝑃) → ((𝑥 ∈ V ↦ (rec(𝐺, 𝐴)‘𝑥))‘𝐶) ∈ 𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 Vcvv 3173 ↦ cmpt 4643 ‘cfv 5804 ωcom 6957 reccrdg 7392 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-om 6958 df-wrecs 7294 df-recs 7355 df-rdg 7393 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |