Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fgreu Structured version   Visualization version   GIF version

Theorem fgreu 28854
 Description: Exactly one point of a function's graph has a given first element. (Contributed by Thierry Arnoux, 1-Apr-2018.)
Assertion
Ref Expression
fgreu ((Fun 𝐹𝑋 ∈ dom 𝐹) → ∃!𝑝𝐹 𝑋 = (1st𝑝))
Distinct variable groups:   𝐹,𝑝   𝑋,𝑝

Proof of Theorem fgreu
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 funfvop 6237 . . 3 ((Fun 𝐹𝑋 ∈ dom 𝐹) → ⟨𝑋, (𝐹𝑋)⟩ ∈ 𝐹)
2 simplll 794 . . . . . . . 8 ((((Fun 𝐹𝑋 ∈ dom 𝐹) ∧ 𝑝𝐹) ∧ 𝑋 = (1st𝑝)) → Fun 𝐹)
3 funrel 5821 . . . . . . . 8 (Fun 𝐹 → Rel 𝐹)
42, 3syl 17 . . . . . . 7 ((((Fun 𝐹𝑋 ∈ dom 𝐹) ∧ 𝑝𝐹) ∧ 𝑋 = (1st𝑝)) → Rel 𝐹)
5 simplr 788 . . . . . . 7 ((((Fun 𝐹𝑋 ∈ dom 𝐹) ∧ 𝑝𝐹) ∧ 𝑋 = (1st𝑝)) → 𝑝𝐹)
6 1st2nd 7105 . . . . . . 7 ((Rel 𝐹𝑝𝐹) → 𝑝 = ⟨(1st𝑝), (2nd𝑝)⟩)
74, 5, 6syl2anc 691 . . . . . 6 ((((Fun 𝐹𝑋 ∈ dom 𝐹) ∧ 𝑝𝐹) ∧ 𝑋 = (1st𝑝)) → 𝑝 = ⟨(1st𝑝), (2nd𝑝)⟩)
8 simpr 476 . . . . . . 7 ((((Fun 𝐹𝑋 ∈ dom 𝐹) ∧ 𝑝𝐹) ∧ 𝑋 = (1st𝑝)) → 𝑋 = (1st𝑝))
9 simpllr 795 . . . . . . . 8 ((((Fun 𝐹𝑋 ∈ dom 𝐹) ∧ 𝑝𝐹) ∧ 𝑋 = (1st𝑝)) → 𝑋 ∈ dom 𝐹)
108opeq1d 4346 . . . . . . . . . 10 ((((Fun 𝐹𝑋 ∈ dom 𝐹) ∧ 𝑝𝐹) ∧ 𝑋 = (1st𝑝)) → ⟨𝑋, (2nd𝑝)⟩ = ⟨(1st𝑝), (2nd𝑝)⟩)
117, 10eqtr4d 2647 . . . . . . . . 9 ((((Fun 𝐹𝑋 ∈ dom 𝐹) ∧ 𝑝𝐹) ∧ 𝑋 = (1st𝑝)) → 𝑝 = ⟨𝑋, (2nd𝑝)⟩)
1211, 5eqeltrrd 2689 . . . . . . . 8 ((((Fun 𝐹𝑋 ∈ dom 𝐹) ∧ 𝑝𝐹) ∧ 𝑋 = (1st𝑝)) → ⟨𝑋, (2nd𝑝)⟩ ∈ 𝐹)
13 funopfvb 6149 . . . . . . . . 9 ((Fun 𝐹𝑋 ∈ dom 𝐹) → ((𝐹𝑋) = (2nd𝑝) ↔ ⟨𝑋, (2nd𝑝)⟩ ∈ 𝐹))
1413biimpar 501 . . . . . . . 8 (((Fun 𝐹𝑋 ∈ dom 𝐹) ∧ ⟨𝑋, (2nd𝑝)⟩ ∈ 𝐹) → (𝐹𝑋) = (2nd𝑝))
152, 9, 12, 14syl21anc 1317 . . . . . . 7 ((((Fun 𝐹𝑋 ∈ dom 𝐹) ∧ 𝑝𝐹) ∧ 𝑋 = (1st𝑝)) → (𝐹𝑋) = (2nd𝑝))
168, 15opeq12d 4348 . . . . . 6 ((((Fun 𝐹𝑋 ∈ dom 𝐹) ∧ 𝑝𝐹) ∧ 𝑋 = (1st𝑝)) → ⟨𝑋, (𝐹𝑋)⟩ = ⟨(1st𝑝), (2nd𝑝)⟩)
177, 16eqtr4d 2647 . . . . 5 ((((Fun 𝐹𝑋 ∈ dom 𝐹) ∧ 𝑝𝐹) ∧ 𝑋 = (1st𝑝)) → 𝑝 = ⟨𝑋, (𝐹𝑋)⟩)
18 simpr 476 . . . . . . 7 ((((Fun 𝐹𝑋 ∈ dom 𝐹) ∧ 𝑝𝐹) ∧ 𝑝 = ⟨𝑋, (𝐹𝑋)⟩) → 𝑝 = ⟨𝑋, (𝐹𝑋)⟩)
1918fveq2d 6107 . . . . . 6 ((((Fun 𝐹𝑋 ∈ dom 𝐹) ∧ 𝑝𝐹) ∧ 𝑝 = ⟨𝑋, (𝐹𝑋)⟩) → (1st𝑝) = (1st ‘⟨𝑋, (𝐹𝑋)⟩))
20 fvex 6113 . . . . . . . 8 (𝐹𝑋) ∈ V
21 op1stg 7071 . . . . . . . 8 ((𝑋 ∈ dom 𝐹 ∧ (𝐹𝑋) ∈ V) → (1st ‘⟨𝑋, (𝐹𝑋)⟩) = 𝑋)
2220, 21mpan2 703 . . . . . . 7 (𝑋 ∈ dom 𝐹 → (1st ‘⟨𝑋, (𝐹𝑋)⟩) = 𝑋)
2322ad3antlr 763 . . . . . 6 ((((Fun 𝐹𝑋 ∈ dom 𝐹) ∧ 𝑝𝐹) ∧ 𝑝 = ⟨𝑋, (𝐹𝑋)⟩) → (1st ‘⟨𝑋, (𝐹𝑋)⟩) = 𝑋)
2419, 23eqtr2d 2645 . . . . 5 ((((Fun 𝐹𝑋 ∈ dom 𝐹) ∧ 𝑝𝐹) ∧ 𝑝 = ⟨𝑋, (𝐹𝑋)⟩) → 𝑋 = (1st𝑝))
2517, 24impbida 873 . . . 4 (((Fun 𝐹𝑋 ∈ dom 𝐹) ∧ 𝑝𝐹) → (𝑋 = (1st𝑝) ↔ 𝑝 = ⟨𝑋, (𝐹𝑋)⟩))
2625ralrimiva 2949 . . 3 ((Fun 𝐹𝑋 ∈ dom 𝐹) → ∀𝑝𝐹 (𝑋 = (1st𝑝) ↔ 𝑝 = ⟨𝑋, (𝐹𝑋)⟩))
27 eqeq2 2621 . . . . . 6 (𝑞 = ⟨𝑋, (𝐹𝑋)⟩ → (𝑝 = 𝑞𝑝 = ⟨𝑋, (𝐹𝑋)⟩))
2827bibi2d 331 . . . . 5 (𝑞 = ⟨𝑋, (𝐹𝑋)⟩ → ((𝑋 = (1st𝑝) ↔ 𝑝 = 𝑞) ↔ (𝑋 = (1st𝑝) ↔ 𝑝 = ⟨𝑋, (𝐹𝑋)⟩)))
2928ralbidv 2969 . . . 4 (𝑞 = ⟨𝑋, (𝐹𝑋)⟩ → (∀𝑝𝐹 (𝑋 = (1st𝑝) ↔ 𝑝 = 𝑞) ↔ ∀𝑝𝐹 (𝑋 = (1st𝑝) ↔ 𝑝 = ⟨𝑋, (𝐹𝑋)⟩)))
3029rspcev 3282 . . 3 ((⟨𝑋, (𝐹𝑋)⟩ ∈ 𝐹 ∧ ∀𝑝𝐹 (𝑋 = (1st𝑝) ↔ 𝑝 = ⟨𝑋, (𝐹𝑋)⟩)) → ∃𝑞𝐹𝑝𝐹 (𝑋 = (1st𝑝) ↔ 𝑝 = 𝑞))
311, 26, 30syl2anc 691 . 2 ((Fun 𝐹𝑋 ∈ dom 𝐹) → ∃𝑞𝐹𝑝𝐹 (𝑋 = (1st𝑝) ↔ 𝑝 = 𝑞))
32 reu6 3362 . 2 (∃!𝑝𝐹 𝑋 = (1st𝑝) ↔ ∃𝑞𝐹𝑝𝐹 (𝑋 = (1st𝑝) ↔ 𝑝 = 𝑞))
3331, 32sylibr 223 1 ((Fun 𝐹𝑋 ∈ dom 𝐹) → ∃!𝑝𝐹 𝑋 = (1st𝑝))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  ∃wrex 2897  ∃!wreu 2898  Vcvv 3173  ⟨cop 4131  dom cdm 5038  Rel wrel 5043  Fun wfun 5798  ‘cfv 5804  1st c1st 7057  2nd c2nd 7058 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-iota 5768  df-fun 5806  df-fn 5807  df-fv 5812  df-1st 7059  df-2nd 7060 This theorem is referenced by:  fcnvgreu  28855
 Copyright terms: Public domain W3C validator