Proof of Theorem reu6
Step | Hyp | Ref
| Expression |
1 | | df-reu 2903 |
. 2
⊢
(∃!𝑥 ∈
𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
2 | | 19.28v 1896 |
. . . . 5
⊢
(∀𝑥(𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) ↔ (𝑦 ∈ 𝐴 ∧ ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦)))) |
3 | | eleq1 2676 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
4 | | sbequ12 2097 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
5 | 3, 4 | anbi12d 743 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑦 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑))) |
6 | | equequ1 1939 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (𝑥 = 𝑦 ↔ 𝑦 = 𝑦)) |
7 | 5, 6 | bibi12d 334 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) ↔ ((𝑦 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑) ↔ 𝑦 = 𝑦))) |
8 | | equid 1926 |
. . . . . . . . . . . 12
⊢ 𝑦 = 𝑦 |
9 | 8 | tbt 358 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑) ↔ ((𝑦 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑) ↔ 𝑦 = 𝑦)) |
10 | | simpl 472 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑) → 𝑦 ∈ 𝐴) |
11 | 9, 10 | sylbir 224 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ 𝐴 ∧ [𝑦 / 𝑥]𝜑) ↔ 𝑦 = 𝑦) → 𝑦 ∈ 𝐴) |
12 | 7, 11 | syl6bi 242 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) → 𝑦 ∈ 𝐴)) |
13 | 12 | spimv 2245 |
. . . . . . . 8
⊢
(∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) → 𝑦 ∈ 𝐴) |
14 | | ibar 524 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑))) |
15 | 14 | bibi1d 332 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐴 → ((𝜑 ↔ 𝑥 = 𝑦) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦))) |
16 | 15 | biimprcd 239 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) → (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) |
17 | 16 | sps 2043 |
. . . . . . . 8
⊢
(∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) → (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) |
18 | 13, 17 | jca 553 |
. . . . . . 7
⊢
(∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) → (𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦)))) |
19 | 18 | axc4i 2116 |
. . . . . 6
⊢
(∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) → ∀𝑥(𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦)))) |
20 | | biimp 204 |
. . . . . . . . . . 11
⊢ ((𝜑 ↔ 𝑥 = 𝑦) → (𝜑 → 𝑥 = 𝑦)) |
21 | 20 | imim2i 16 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦)) → (𝑥 ∈ 𝐴 → (𝜑 → 𝑥 = 𝑦))) |
22 | 21 | impd 446 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦)) → ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝑦)) |
23 | 22 | adantl 481 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) → ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 = 𝑦)) |
24 | | eleq1a 2683 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ 𝐴 → (𝑥 = 𝑦 → 𝑥 ∈ 𝐴)) |
25 | 24 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) → (𝑥 = 𝑦 → 𝑥 ∈ 𝐴)) |
26 | 25 | imp 444 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) ∧ 𝑥 = 𝑦) → 𝑥 ∈ 𝐴) |
27 | | biimpr 209 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ↔ 𝑥 = 𝑦) → (𝑥 = 𝑦 → 𝜑)) |
28 | 27 | imim2i 16 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦)) → (𝑥 ∈ 𝐴 → (𝑥 = 𝑦 → 𝜑))) |
29 | 28 | com23 84 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦)) → (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 → 𝜑))) |
30 | 29 | imp 444 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦)) ∧ 𝑥 = 𝑦) → (𝑥 ∈ 𝐴 → 𝜑)) |
31 | 30 | adantll 746 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) ∧ 𝑥 = 𝑦) → (𝑥 ∈ 𝐴 → 𝜑)) |
32 | 26, 31 | jcai 557 |
. . . . . . . . 9
⊢ (((𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) ∧ 𝑥 = 𝑦) → (𝑥 ∈ 𝐴 ∧ 𝜑)) |
33 | 32 | ex 449 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) → (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ∧ 𝜑))) |
34 | 23, 33 | impbid 201 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦)) |
35 | 34 | alimi 1730 |
. . . . . 6
⊢
(∀𝑥(𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) → ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦)) |
36 | 19, 35 | impbii 198 |
. . . . 5
⊢
(∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) ↔ ∀𝑥(𝑦 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦)))) |
37 | | df-ral 2901 |
. . . . . 6
⊢
(∀𝑥 ∈
𝐴 (𝜑 ↔ 𝑥 = 𝑦) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦))) |
38 | 37 | anbi2i 726 |
. . . . 5
⊢ ((𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝑦)) ↔ (𝑦 ∈ 𝐴 ∧ ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 ↔ 𝑥 = 𝑦)))) |
39 | 2, 36, 38 | 3bitr4i 291 |
. . . 4
⊢
(∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) ↔ (𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝑦))) |
40 | 39 | exbii 1764 |
. . 3
⊢
(∃𝑦∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦) ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝑦))) |
41 | | df-eu 2462 |
. . 3
⊢
(∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑦∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ 𝑥 = 𝑦)) |
42 | | df-rex 2902 |
. . 3
⊢
(∃𝑦 ∈
𝐴 ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝑦) ↔ ∃𝑦(𝑦 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝑦))) |
43 | 40, 41, 42 | 3bitr4i 291 |
. 2
⊢
(∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝑦)) |
44 | 1, 43 | bitri 263 |
1
⊢
(∃!𝑥 ∈
𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝑦)) |