MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reu6 Structured version   Unicode version

Theorem reu6 3261
Description: A way to express restricted uniqueness. (Contributed by NM, 20-Oct-2006.)
Assertion
Ref Expression
reu6  |-  ( E! x  e.  A  ph  <->  E. y  e.  A  A. x  e.  A  ( ph 
<->  x  =  y ) )
Distinct variable groups:    x, y, A    ph, y
Allowed substitution hint:    ph( x)

Proof of Theorem reu6
StepHypRef Expression
1 df-reu 2783 . 2  |-  ( E! x  e.  A  ph  <->  E! x ( x  e.  A  /\  ph )
)
2 19.28v 1815 . . . . 5  |-  ( A. x ( y  e.  A  /\  ( x  e.  A  ->  ( ph 
<->  x  =  y ) ) )  <->  ( y  e.  A  /\  A. x
( x  e.  A  ->  ( ph  <->  x  =  y ) ) ) )
3 eleq1 2495 . . . . . . . . . . . 12  |-  ( x  =  y  ->  (
x  e.  A  <->  y  e.  A ) )
4 sbequ12 2048 . . . . . . . . . . . 12  |-  ( x  =  y  ->  ( ph 
<->  [ y  /  x ] ph ) )
53, 4anbi12d 716 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
( x  e.  A  /\  ph )  <->  ( y  e.  A  /\  [ y  /  x ] ph ) ) )
6 equequ1 1849 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
x  =  y  <->  y  =  y ) )
75, 6bibi12d 323 . . . . . . . . . 10  |-  ( x  =  y  ->  (
( ( x  e.  A  /\  ph )  <->  x  =  y )  <->  ( (
y  e.  A  /\  [ y  /  x ] ph )  <->  y  =  y ) ) )
8 equid 1841 . . . . . . . . . . . 12  |-  y  =  y
98tbt 346 . . . . . . . . . . 11  |-  ( ( y  e.  A  /\  [ y  /  x ] ph )  <->  ( ( y  e.  A  /\  [
y  /  x ] ph )  <->  y  =  y ) )
10 simpl 459 . . . . . . . . . . 11  |-  ( ( y  e.  A  /\  [ y  /  x ] ph )  ->  y  e.  A )
119, 10sylbir 217 . . . . . . . . . 10  |-  ( ( ( y  e.  A  /\  [ y  /  x ] ph )  <->  y  =  y )  ->  y  e.  A )
127, 11syl6bi 232 . . . . . . . . 9  |-  ( x  =  y  ->  (
( ( x  e.  A  /\  ph )  <->  x  =  y )  -> 
y  e.  A ) )
1312spimv 2064 . . . . . . . 8  |-  ( A. x ( ( x  e.  A  /\  ph ) 
<->  x  =  y )  ->  y  e.  A
)
14 biimp 197 . . . . . . . . . . . 12  |-  ( ( ( x  e.  A  /\  ph )  <->  x  =  y )  ->  (
( x  e.  A  /\  ph )  ->  x  =  y ) )
1514expdimp 439 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  A  /\  ph )  <->  x  =  y )  /\  x  e.  A )  ->  ( ph  ->  x  =  y ) )
16 biimpr 202 . . . . . . . . . . . . 13  |-  ( ( ( x  e.  A  /\  ph )  <->  x  =  y )  ->  (
x  =  y  -> 
( x  e.  A  /\  ph ) ) )
17 simpr 463 . . . . . . . . . . . . 13  |-  ( ( x  e.  A  /\  ph )  ->  ph )
1816, 17syl6 35 . . . . . . . . . . . 12  |-  ( ( ( x  e.  A  /\  ph )  <->  x  =  y )  ->  (
x  =  y  ->  ph ) )
1918adantr 467 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  A  /\  ph )  <->  x  =  y )  /\  x  e.  A )  ->  ( x  =  y  ->  ph ) )
2015, 19impbid 194 . . . . . . . . . 10  |-  ( ( ( ( x  e.  A  /\  ph )  <->  x  =  y )  /\  x  e.  A )  ->  ( ph  <->  x  =  y ) )
2120ex 436 . . . . . . . . 9  |-  ( ( ( x  e.  A  /\  ph )  <->  x  =  y )  ->  (
x  e.  A  -> 
( ph  <->  x  =  y
) ) )
2221sps 1917 . . . . . . . 8  |-  ( A. x ( ( x  e.  A  /\  ph ) 
<->  x  =  y )  ->  ( x  e.  A  ->  ( ph  <->  x  =  y ) ) )
2313, 22jca 535 . . . . . . 7  |-  ( A. x ( ( x  e.  A  /\  ph ) 
<->  x  =  y )  ->  ( y  e.  A  /\  ( x  e.  A  ->  ( ph 
<->  x  =  y ) ) ) )
2423axc4i 1954 . . . . . 6  |-  ( A. x ( ( x  e.  A  /\  ph ) 
<->  x  =  y )  ->  A. x ( y  e.  A  /\  (
x  e.  A  -> 
( ph  <->  x  =  y
) ) ) )
25 biimp 197 . . . . . . . . . . 11  |-  ( (
ph 
<->  x  =  y )  ->  ( ph  ->  x  =  y ) )
2625imim2i 16 . . . . . . . . . 10  |-  ( ( x  e.  A  -> 
( ph  <->  x  =  y
) )  ->  (
x  e.  A  -> 
( ph  ->  x  =  y ) ) )
2726impd 433 . . . . . . . . 9  |-  ( ( x  e.  A  -> 
( ph  <->  x  =  y
) )  ->  (
( x  e.  A  /\  ph )  ->  x  =  y ) )
2827adantl 468 . . . . . . . 8  |-  ( ( y  e.  A  /\  ( x  e.  A  ->  ( ph  <->  x  =  y ) ) )  ->  ( ( x  e.  A  /\  ph )  ->  x  =  y ) )
29 eleq1a 2506 . . . . . . . . . . . 12  |-  ( y  e.  A  ->  (
x  =  y  ->  x  e.  A )
)
3029adantr 467 . . . . . . . . . . 11  |-  ( ( y  e.  A  /\  ( x  e.  A  ->  ( ph  <->  x  =  y ) ) )  ->  ( x  =  y  ->  x  e.  A ) )
3130imp 431 . . . . . . . . . 10  |-  ( ( ( y  e.  A  /\  ( x  e.  A  ->  ( ph  <->  x  =  y ) ) )  /\  x  =  y )  ->  x  e.  A )
32 biimpr 202 . . . . . . . . . . . . . 14  |-  ( (
ph 
<->  x  =  y )  ->  ( x  =  y  ->  ph ) )
3332imim2i 16 . . . . . . . . . . . . 13  |-  ( ( x  e.  A  -> 
( ph  <->  x  =  y
) )  ->  (
x  e.  A  -> 
( x  =  y  ->  ph ) ) )
3433com23 82 . . . . . . . . . . . 12  |-  ( ( x  e.  A  -> 
( ph  <->  x  =  y
) )  ->  (
x  =  y  -> 
( x  e.  A  ->  ph ) ) )
3534imp 431 . . . . . . . . . . 11  |-  ( ( ( x  e.  A  ->  ( ph  <->  x  =  y ) )  /\  x  =  y )  ->  ( x  e.  A  ->  ph ) )
3635adantll 719 . . . . . . . . . 10  |-  ( ( ( y  e.  A  /\  ( x  e.  A  ->  ( ph  <->  x  =  y ) ) )  /\  x  =  y )  ->  ( x  e.  A  ->  ph )
)
3731, 36jcai 539 . . . . . . . . 9  |-  ( ( ( y  e.  A  /\  ( x  e.  A  ->  ( ph  <->  x  =  y ) ) )  /\  x  =  y )  ->  ( x  e.  A  /\  ph )
)
3837ex 436 . . . . . . . 8  |-  ( ( y  e.  A  /\  ( x  e.  A  ->  ( ph  <->  x  =  y ) ) )  ->  ( x  =  y  ->  ( x  e.  A  /\  ph )
) )
3928, 38impbid 194 . . . . . . 7  |-  ( ( y  e.  A  /\  ( x  e.  A  ->  ( ph  <->  x  =  y ) ) )  ->  ( ( x  e.  A  /\  ph ) 
<->  x  =  y ) )
4039alimi 1681 . . . . . 6  |-  ( A. x ( y  e.  A  /\  ( x  e.  A  ->  ( ph 
<->  x  =  y ) ) )  ->  A. x
( ( x  e.  A  /\  ph )  <->  x  =  y ) )
4124, 40impbii 191 . . . . 5  |-  ( A. x ( ( x  e.  A  /\  ph ) 
<->  x  =  y )  <->  A. x ( y  e.  A  /\  ( x  e.  A  ->  ( ph 
<->  x  =  y ) ) ) )
42 df-ral 2781 . . . . . 6  |-  ( A. x  e.  A  ( ph 
<->  x  =  y )  <->  A. x ( x  e.  A  ->  ( ph  <->  x  =  y ) ) )
4342anbi2i 699 . . . . 5  |-  ( ( y  e.  A  /\  A. x  e.  A  (
ph 
<->  x  =  y ) )  <->  ( y  e.  A  /\  A. x
( x  e.  A  ->  ( ph  <->  x  =  y ) ) ) )
442, 41, 433bitr4i 281 . . . 4  |-  ( A. x ( ( x  e.  A  /\  ph ) 
<->  x  =  y )  <-> 
( y  e.  A  /\  A. x  e.  A  ( ph  <->  x  =  y
) ) )
4544exbii 1713 . . 3  |-  ( E. y A. x ( ( x  e.  A  /\  ph )  <->  x  =  y )  <->  E. y
( y  e.  A  /\  A. x  e.  A  ( ph  <->  x  =  y
) ) )
46 df-eu 2270 . . 3  |-  ( E! x ( x  e.  A  /\  ph )  <->  E. y A. x ( ( x  e.  A  /\  ph )  <->  x  =  y ) )
47 df-rex 2782 . . 3  |-  ( E. y  e.  A  A. x  e.  A  ( ph 
<->  x  =  y )  <->  E. y ( y  e.  A  /\  A. x  e.  A  ( ph  <->  x  =  y ) ) )
4845, 46, 473bitr4i 281 . 2  |-  ( E! x ( x  e.  A  /\  ph )  <->  E. y  e.  A  A. x  e.  A  ( ph 
<->  x  =  y ) )
491, 48bitri 253 1  |-  ( E! x  e.  A  ph  <->  E. y  e.  A  A. x  e.  A  ( ph 
<->  x  =  y ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371   A.wal 1436   E.wex 1660   [wsb 1787    e. wcel 1869   E!weu 2266   A.wral 2776   E.wrex 2777   E!wreu 2778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-10 1888  ax-12 1906  ax-13 2054  ax-ext 2401
This theorem depends on definitions:  df-bi 189  df-an 373  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-cleq 2415  df-clel 2418  df-ral 2781  df-rex 2782  df-reu 2783
This theorem is referenced by:  reu3  3262  reu6i  3263  reu8  3268  xpf1o  7738  ufileu  20926  isppw2  24034  cusgrafilem2  25200  fgreu  28270  fcnvgreu  28271  fourierdlem50  37846
  Copyright terms: Public domain W3C validator