Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fgreu Structured version   Unicode version

Theorem fgreu 25995
Description: Exactly one point of a function's graph has a given first element. (Contributed by Thierry Arnoux, 1-Apr-2018.)
Assertion
Ref Expression
fgreu  |-  ( ( Fun  F  /\  X  e.  dom  F )  ->  E! p  e.  F  X  =  ( 1st `  p ) )
Distinct variable groups:    F, p    X, p

Proof of Theorem fgreu
Dummy variable  q is distinct from all other variables.
StepHypRef Expression
1 funfvop 5820 . . 3  |-  ( ( Fun  F  /\  X  e.  dom  F )  ->  <. X ,  ( F `
 X ) >.  e.  F )
2 simplll 757 . . . . . . . 8  |-  ( ( ( ( Fun  F  /\  X  e.  dom  F )  /\  p  e.  F )  /\  X  =  ( 1st `  p
) )  ->  Fun  F )
3 funrel 5440 . . . . . . . 8  |-  ( Fun 
F  ->  Rel  F )
42, 3syl 16 . . . . . . 7  |-  ( ( ( ( Fun  F  /\  X  e.  dom  F )  /\  p  e.  F )  /\  X  =  ( 1st `  p
) )  ->  Rel  F )
5 simplr 754 . . . . . . 7  |-  ( ( ( ( Fun  F  /\  X  e.  dom  F )  /\  p  e.  F )  /\  X  =  ( 1st `  p
) )  ->  p  e.  F )
6 1st2nd 6625 . . . . . . 7  |-  ( ( Rel  F  /\  p  e.  F )  ->  p  =  <. ( 1st `  p
) ,  ( 2nd `  p ) >. )
74, 5, 6syl2anc 661 . . . . . 6  |-  ( ( ( ( Fun  F  /\  X  e.  dom  F )  /\  p  e.  F )  /\  X  =  ( 1st `  p
) )  ->  p  =  <. ( 1st `  p
) ,  ( 2nd `  p ) >. )
8 simpr 461 . . . . . . 7  |-  ( ( ( ( Fun  F  /\  X  e.  dom  F )  /\  p  e.  F )  /\  X  =  ( 1st `  p
) )  ->  X  =  ( 1st `  p
) )
9 simpllr 758 . . . . . . . 8  |-  ( ( ( ( Fun  F  /\  X  e.  dom  F )  /\  p  e.  F )  /\  X  =  ( 1st `  p
) )  ->  X  e.  dom  F )
108opeq1d 4070 . . . . . . . . . 10  |-  ( ( ( ( Fun  F  /\  X  e.  dom  F )  /\  p  e.  F )  /\  X  =  ( 1st `  p
) )  ->  <. X , 
( 2nd `  p
) >.  =  <. ( 1st `  p ) ,  ( 2nd `  p
) >. )
117, 10eqtr4d 2478 . . . . . . . . 9  |-  ( ( ( ( Fun  F  /\  X  e.  dom  F )  /\  p  e.  F )  /\  X  =  ( 1st `  p
) )  ->  p  =  <. X ,  ( 2nd `  p )
>. )
1211, 5eqeltrrd 2518 . . . . . . . 8  |-  ( ( ( ( Fun  F  /\  X  e.  dom  F )  /\  p  e.  F )  /\  X  =  ( 1st `  p
) )  ->  <. X , 
( 2nd `  p
) >.  e.  F )
13 funopfvb 5740 . . . . . . . . 9  |-  ( ( Fun  F  /\  X  e.  dom  F )  -> 
( ( F `  X )  =  ( 2nd `  p )  <->  <. X ,  ( 2nd `  p ) >.  e.  F
) )
1413biimpar 485 . . . . . . . 8  |-  ( ( ( Fun  F  /\  X  e.  dom  F )  /\  <. X ,  ( 2nd `  p )
>.  e.  F )  -> 
( F `  X
)  =  ( 2nd `  p ) )
152, 9, 12, 14syl21anc 1217 . . . . . . 7  |-  ( ( ( ( Fun  F  /\  X  e.  dom  F )  /\  p  e.  F )  /\  X  =  ( 1st `  p
) )  ->  ( F `  X )  =  ( 2nd `  p
) )
168, 15opeq12d 4072 . . . . . 6  |-  ( ( ( ( Fun  F  /\  X  e.  dom  F )  /\  p  e.  F )  /\  X  =  ( 1st `  p
) )  ->  <. X , 
( F `  X
) >.  =  <. ( 1st `  p ) ,  ( 2nd `  p
) >. )
177, 16eqtr4d 2478 . . . . 5  |-  ( ( ( ( Fun  F  /\  X  e.  dom  F )  /\  p  e.  F )  /\  X  =  ( 1st `  p
) )  ->  p  =  <. X ,  ( F `  X )
>. )
18 simpr 461 . . . . . . 7  |-  ( ( ( ( Fun  F  /\  X  e.  dom  F )  /\  p  e.  F )  /\  p  =  <. X ,  ( F `  X )
>. )  ->  p  = 
<. X ,  ( F `
 X ) >.
)
1918fveq2d 5700 . . . . . 6  |-  ( ( ( ( Fun  F  /\  X  e.  dom  F )  /\  p  e.  F )  /\  p  =  <. X ,  ( F `  X )
>. )  ->  ( 1st `  p )  =  ( 1st `  <. X , 
( F `  X
) >. ) )
20 fvex 5706 . . . . . . . 8  |-  ( F `
 X )  e. 
_V
21 op1stg 6594 . . . . . . . 8  |-  ( ( X  e.  dom  F  /\  ( F `  X
)  e.  _V )  ->  ( 1st `  <. X ,  ( F `  X ) >. )  =  X )
2220, 21mpan2 671 . . . . . . 7  |-  ( X  e.  dom  F  -> 
( 1st `  <. X ,  ( F `  X ) >. )  =  X )
2322ad3antlr 730 . . . . . 6  |-  ( ( ( ( Fun  F  /\  X  e.  dom  F )  /\  p  e.  F )  /\  p  =  <. X ,  ( F `  X )
>. )  ->  ( 1st `  <. X ,  ( F `  X )
>. )  =  X
)
2419, 23eqtr2d 2476 . . . . 5  |-  ( ( ( ( Fun  F  /\  X  e.  dom  F )  /\  p  e.  F )  /\  p  =  <. X ,  ( F `  X )
>. )  ->  X  =  ( 1st `  p
) )
2517, 24impbida 828 . . . 4  |-  ( ( ( Fun  F  /\  X  e.  dom  F )  /\  p  e.  F
)  ->  ( X  =  ( 1st `  p
)  <->  p  =  <. X ,  ( F `  X ) >. )
)
2625ralrimiva 2804 . . 3  |-  ( ( Fun  F  /\  X  e.  dom  F )  ->  A. p  e.  F  ( X  =  ( 1st `  p )  <->  p  =  <. X ,  ( F `
 X ) >.
) )
27 eqeq2 2452 . . . . . 6  |-  ( q  =  <. X ,  ( F `  X )
>.  ->  ( p  =  q  <->  p  =  <. X ,  ( F `  X ) >. )
)
2827bibi2d 318 . . . . 5  |-  ( q  =  <. X ,  ( F `  X )
>.  ->  ( ( X  =  ( 1st `  p
)  <->  p  =  q
)  <->  ( X  =  ( 1st `  p
)  <->  p  =  <. X ,  ( F `  X ) >. )
) )
2928ralbidv 2740 . . . 4  |-  ( q  =  <. X ,  ( F `  X )
>.  ->  ( A. p  e.  F  ( X  =  ( 1st `  p
)  <->  p  =  q
)  <->  A. p  e.  F  ( X  =  ( 1st `  p )  <->  p  =  <. X ,  ( F `
 X ) >.
) ) )
3029rspcev 3078 . . 3  |-  ( (
<. X ,  ( F `
 X ) >.  e.  F  /\  A. p  e.  F  ( X  =  ( 1st `  p
)  <->  p  =  <. X ,  ( F `  X ) >. )
)  ->  E. q  e.  F  A. p  e.  F  ( X  =  ( 1st `  p
)  <->  p  =  q
) )
311, 26, 30syl2anc 661 . 2  |-  ( ( Fun  F  /\  X  e.  dom  F )  ->  E. q  e.  F  A. p  e.  F  ( X  =  ( 1st `  p )  <->  p  =  q ) )
32 reu6 3153 . 2  |-  ( E! p  e.  F  X  =  ( 1st `  p
)  <->  E. q  e.  F  A. p  e.  F  ( X  =  ( 1st `  p )  <->  p  =  q ) )
3331, 32sylibr 212 1  |-  ( ( Fun  F  /\  X  e.  dom  F )  ->  E! p  e.  F  X  =  ( 1st `  p ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2720   E.wrex 2721   E!wreu 2722   _Vcvv 2977   <.cop 3888   dom cdm 4845   Rel wrel 4850   Fun wfun 5417   ` cfv 5423   1stc1st 6580   2ndc2nd 6581
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-ral 2725  df-rex 2726  df-reu 2727  df-rab 2729  df-v 2979  df-sbc 3192  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-nul 3643  df-if 3797  df-sn 3883  df-pr 3885  df-op 3889  df-uni 4097  df-br 4298  df-opab 4356  df-mpt 4357  df-id 4641  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-iota 5386  df-fun 5425  df-fn 5426  df-fv 5431  df-1st 6582  df-2nd 6583
This theorem is referenced by:  fcnvgreu  25996
  Copyright terms: Public domain W3C validator