MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elqsn0 Structured version   Visualization version   GIF version

Theorem elqsn0 7703
Description: A quotient set doesn't contain the empty set. (Contributed by NM, 24-Aug-1995.)
Assertion
Ref Expression
elqsn0 ((dom 𝑅 = 𝐴𝐵 ∈ (𝐴 / 𝑅)) → 𝐵 ≠ ∅)

Proof of Theorem elqsn0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . 2 (𝐴 / 𝑅) = (𝐴 / 𝑅)
2 neeq1 2844 . 2 ([𝑥]𝑅 = 𝐵 → ([𝑥]𝑅 ≠ ∅ ↔ 𝐵 ≠ ∅))
3 eleq2 2677 . . . 4 (dom 𝑅 = 𝐴 → (𝑥 ∈ dom 𝑅𝑥𝐴))
43biimpar 501 . . 3 ((dom 𝑅 = 𝐴𝑥𝐴) → 𝑥 ∈ dom 𝑅)
5 ecdmn0 7676 . . 3 (𝑥 ∈ dom 𝑅 ↔ [𝑥]𝑅 ≠ ∅)
64, 5sylib 207 . 2 ((dom 𝑅 = 𝐴𝑥𝐴) → [𝑥]𝑅 ≠ ∅)
71, 2, 6ectocld 7701 1 ((dom 𝑅 = 𝐴𝐵 ∈ (𝐴 / 𝑅)) → 𝐵 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wne 2780  c0 3874  dom cdm 5038  [cec 7627   / cqs 7628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-xp 5044  df-cnv 5046  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-ec 7631  df-qs 7635
This theorem is referenced by:  ecelqsdm  7704  0nsr  9779  sylow1lem3  17838  vitalilem5  23187  prtlem400  33173
  Copyright terms: Public domain W3C validator