Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elon Structured version   Visualization version   GIF version

Theorem elon 5649
 Description: An ordinal number is an ordinal set. (Contributed by NM, 5-Jun-1994.)
Hypothesis
Ref Expression
elon.1 𝐴 ∈ V
Assertion
Ref Expression
elon (𝐴 ∈ On ↔ Ord 𝐴)

Proof of Theorem elon
StepHypRef Expression
1 elon.1 . 2 𝐴 ∈ V
2 elong 5648 . 2 (𝐴 ∈ V → (𝐴 ∈ On ↔ Ord 𝐴))
31, 2ax-mp 5 1 (𝐴 ∈ On ↔ Ord 𝐴)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 195   ∈ wcel 1977  Vcvv 3173  Ord word 5639  Oncon0 5640 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-v 3175  df-in 3547  df-ss 3554  df-uni 4373  df-tr 4681  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-ord 5643  df-on 5644 This theorem is referenced by:  tron  5663  0elon  5695  smogt  7351  dfrecs3  7356  rdglim2  7415  omeulem1  7549  isfinite2  8103  r0weon  8718  cflim3  8967  inar1  9476  ellimits  31187  dford3lem2  36612
 Copyright terms: Public domain W3C validator