![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elon | Structured version Visualization version Unicode version |
Description: An ordinal number is an ordinal set. (Contributed by NM, 5-Jun-1994.) |
Ref | Expression |
---|---|
elon.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
elon |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elon.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | elong 5430 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1668 ax-4 1681 ax-5 1757 ax-6 1804 ax-7 1850 ax-10 1914 ax-11 1919 ax-12 1932 ax-13 2090 ax-ext 2430 |
This theorem depends on definitions: df-bi 189 df-an 373 df-tru 1446 df-ex 1663 df-nf 1667 df-sb 1797 df-clab 2437 df-cleq 2443 df-clel 2446 df-nfc 2580 df-ral 2741 df-rex 2742 df-v 3046 df-in 3410 df-ss 3417 df-uni 4198 df-tr 4497 df-po 4754 df-so 4755 df-fr 4792 df-we 4794 df-ord 5425 df-on 5426 |
This theorem is referenced by: tron 5445 0elon 5475 smogt 7083 dfrecs3 7088 rdglim2 7147 omeulem1 7280 isfinite2 7826 r0weon 8440 cflim3 8689 inar1 9197 ellimits 30670 dford3lem2 35876 |
Copyright terms: Public domain | W3C validator |