MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elon Structured version   Visualization version   Unicode version

Theorem elon 5431
Description: An ordinal number is an ordinal set. (Contributed by NM, 5-Jun-1994.)
Hypothesis
Ref Expression
elon.1  |-  A  e. 
_V
Assertion
Ref Expression
elon  |-  ( A  e.  On  <->  Ord  A )

Proof of Theorem elon
StepHypRef Expression
1 elon.1 . 2  |-  A  e. 
_V
2 elong 5430 . 2  |-  ( A  e.  _V  ->  ( A  e.  On  <->  Ord  A ) )
31, 2ax-mp 5 1  |-  ( A  e.  On  <->  Ord  A )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 188    e. wcel 1886   _Vcvv 3044   Ord word 5421   Oncon0 5422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430
This theorem depends on definitions:  df-bi 189  df-an 373  df-tru 1446  df-ex 1663  df-nf 1667  df-sb 1797  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ral 2741  df-rex 2742  df-v 3046  df-in 3410  df-ss 3417  df-uni 4198  df-tr 4497  df-po 4754  df-so 4755  df-fr 4792  df-we 4794  df-ord 5425  df-on 5426
This theorem is referenced by:  tron  5445  0elon  5475  smogt  7083  dfrecs3  7088  rdglim2  7147  omeulem1  7280  isfinite2  7826  r0weon  8440  cflim3  8689  inar1  9197  ellimits  30670  dford3lem2  35876
  Copyright terms: Public domain W3C validator