 Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfid2 Structured version   Visualization version   GIF version

Theorem dfid2 4956
 Description: Alternate definition of the identity relation. (Contributed by NM, 15-Mar-2007.)
Assertion
Ref Expression
dfid2 I = {⟨𝑥, 𝑥⟩ ∣ 𝑥 = 𝑥}

Proof of Theorem dfid2
StepHypRef Expression
1 dfid3 4954 1 I = {⟨𝑥, 𝑥⟩ ∣ 𝑥 = 𝑥}
 Colors of variables: wff setvar class Syntax hints:   = wceq 1475  {copab 4642   I cid 4948 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-opab 4644  df-id 4953 This theorem is referenced by:  fsplit  7169
 Copyright terms: Public domain W3C validator