Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfid4 | Structured version Visualization version GIF version |
Description: The identity function using maps-to notation. (Contributed by Scott Fenton, 15-Dec-2017.) |
Ref | Expression |
---|---|
dfid4 | ⊢ I = (𝑥 ∈ V ↦ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equcom 1932 | . . . 4 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) | |
2 | vex 3176 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | 2 | biantrur 526 | . . . 4 ⊢ (𝑦 = 𝑥 ↔ (𝑥 ∈ V ∧ 𝑦 = 𝑥)) |
4 | 1, 3 | bitri 263 | . . 3 ⊢ (𝑥 = 𝑦 ↔ (𝑥 ∈ V ∧ 𝑦 = 𝑥)) |
5 | 4 | opabbii 4649 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 = 𝑥)} |
6 | df-id 4953 | . 2 ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} | |
7 | df-mpt 4645 | . 2 ⊢ (𝑥 ∈ V ↦ 𝑥) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 = 𝑥)} | |
8 | 5, 6, 7 | 3eqtr4i 2642 | 1 ⊢ I = (𝑥 ∈ V ↦ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 = wceq 1475 ∈ wcel 1977 Vcvv 3173 {copab 4642 ↦ cmpt 4643 I cid 4948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-v 3175 df-opab 4644 df-mpt 4645 df-id 4953 |
This theorem is referenced by: dfid5 13615 dfid6 13616 dfid7 36938 |
Copyright terms: Public domain | W3C validator |