MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsplit Structured version   Visualization version   GIF version

Theorem fsplit 7169
Description: A function that can be used to feed a common value to both operands of an operation. Use as the second argument of a composition with the function of fpar 7168 in order to build compound functions such as 𝑦 = ((√‘𝑥) + (abs‘𝑥)). (Contributed by NM, 17-Sep-2007.)
Assertion
Ref Expression
fsplit (1st ↾ I ) = (𝑥 ∈ V ↦ ⟨𝑥, 𝑥⟩)

Proof of Theorem fsplit
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3176 . . . . 5 𝑥 ∈ V
2 vex 3176 . . . . 5 𝑦 ∈ V
31, 2brcnv 5227 . . . 4 (𝑥(1st ↾ I )𝑦𝑦(1st ↾ I )𝑥)
41brres 5323 . . . . 5 (𝑦(1st ↾ I )𝑥 ↔ (𝑦1st 𝑥𝑦 ∈ I ))
5 19.42v 1905 . . . . . . 7 (∃𝑧((1st𝑦) = 𝑥𝑦 = ⟨𝑧, 𝑧⟩) ↔ ((1st𝑦) = 𝑥 ∧ ∃𝑧 𝑦 = ⟨𝑧, 𝑧⟩))
6 vex 3176 . . . . . . . . . . 11 𝑧 ∈ V
76, 6op1std 7069 . . . . . . . . . 10 (𝑦 = ⟨𝑧, 𝑧⟩ → (1st𝑦) = 𝑧)
87eqeq1d 2612 . . . . . . . . 9 (𝑦 = ⟨𝑧, 𝑧⟩ → ((1st𝑦) = 𝑥𝑧 = 𝑥))
98pm5.32ri 668 . . . . . . . 8 (((1st𝑦) = 𝑥𝑦 = ⟨𝑧, 𝑧⟩) ↔ (𝑧 = 𝑥𝑦 = ⟨𝑧, 𝑧⟩))
109exbii 1764 . . . . . . 7 (∃𝑧((1st𝑦) = 𝑥𝑦 = ⟨𝑧, 𝑧⟩) ↔ ∃𝑧(𝑧 = 𝑥𝑦 = ⟨𝑧, 𝑧⟩))
11 fo1st 7079 . . . . . . . . . 10 1st :V–onto→V
12 fofn 6030 . . . . . . . . . 10 (1st :V–onto→V → 1st Fn V)
1311, 12ax-mp 5 . . . . . . . . 9 1st Fn V
14 fnbrfvb 6146 . . . . . . . . 9 ((1st Fn V ∧ 𝑦 ∈ V) → ((1st𝑦) = 𝑥𝑦1st 𝑥))
1513, 2, 14mp2an 704 . . . . . . . 8 ((1st𝑦) = 𝑥𝑦1st 𝑥)
16 dfid2 4956 . . . . . . . . . 10 I = {⟨𝑧, 𝑧⟩ ∣ 𝑧 = 𝑧}
1716eleq2i 2680 . . . . . . . . 9 (𝑦 ∈ I ↔ 𝑦 ∈ {⟨𝑧, 𝑧⟩ ∣ 𝑧 = 𝑧})
18 nfe1 2014 . . . . . . . . . . 11 𝑧𝑧(𝑦 = ⟨𝑧, 𝑧⟩ ∧ 𝑧 = 𝑧)
191819.9 2060 . . . . . . . . . 10 (∃𝑧𝑧(𝑦 = ⟨𝑧, 𝑧⟩ ∧ 𝑧 = 𝑧) ↔ ∃𝑧(𝑦 = ⟨𝑧, 𝑧⟩ ∧ 𝑧 = 𝑧))
20 elopab 4908 . . . . . . . . . 10 (𝑦 ∈ {⟨𝑧, 𝑧⟩ ∣ 𝑧 = 𝑧} ↔ ∃𝑧𝑧(𝑦 = ⟨𝑧, 𝑧⟩ ∧ 𝑧 = 𝑧))
21 equid 1926 . . . . . . . . . . . 12 𝑧 = 𝑧
2221biantru 525 . . . . . . . . . . 11 (𝑦 = ⟨𝑧, 𝑧⟩ ↔ (𝑦 = ⟨𝑧, 𝑧⟩ ∧ 𝑧 = 𝑧))
2322exbii 1764 . . . . . . . . . 10 (∃𝑧 𝑦 = ⟨𝑧, 𝑧⟩ ↔ ∃𝑧(𝑦 = ⟨𝑧, 𝑧⟩ ∧ 𝑧 = 𝑧))
2419, 20, 233bitr4i 291 . . . . . . . . 9 (𝑦 ∈ {⟨𝑧, 𝑧⟩ ∣ 𝑧 = 𝑧} ↔ ∃𝑧 𝑦 = ⟨𝑧, 𝑧⟩)
2517, 24bitr2i 264 . . . . . . . 8 (∃𝑧 𝑦 = ⟨𝑧, 𝑧⟩ ↔ 𝑦 ∈ I )
2615, 25anbi12i 729 . . . . . . 7 (((1st𝑦) = 𝑥 ∧ ∃𝑧 𝑦 = ⟨𝑧, 𝑧⟩) ↔ (𝑦1st 𝑥𝑦 ∈ I ))
275, 10, 263bitr3ri 290 . . . . . 6 ((𝑦1st 𝑥𝑦 ∈ I ) ↔ ∃𝑧(𝑧 = 𝑥𝑦 = ⟨𝑧, 𝑧⟩))
28 id 22 . . . . . . . . 9 (𝑧 = 𝑥𝑧 = 𝑥)
2928, 28opeq12d 4348 . . . . . . . 8 (𝑧 = 𝑥 → ⟨𝑧, 𝑧⟩ = ⟨𝑥, 𝑥⟩)
3029eqeq2d 2620 . . . . . . 7 (𝑧 = 𝑥 → (𝑦 = ⟨𝑧, 𝑧⟩ ↔ 𝑦 = ⟨𝑥, 𝑥⟩))
311, 30ceqsexv 3215 . . . . . 6 (∃𝑧(𝑧 = 𝑥𝑦 = ⟨𝑧, 𝑧⟩) ↔ 𝑦 = ⟨𝑥, 𝑥⟩)
3227, 31bitri 263 . . . . 5 ((𝑦1st 𝑥𝑦 ∈ I ) ↔ 𝑦 = ⟨𝑥, 𝑥⟩)
334, 32bitri 263 . . . 4 (𝑦(1st ↾ I )𝑥𝑦 = ⟨𝑥, 𝑥⟩)
343, 33bitri 263 . . 3 (𝑥(1st ↾ I )𝑦𝑦 = ⟨𝑥, 𝑥⟩)
3534opabbii 4649 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝑥(1st ↾ I )𝑦} = {⟨𝑥, 𝑦⟩ ∣ 𝑦 = ⟨𝑥, 𝑥⟩}
36 relcnv 5422 . . 3 Rel (1st ↾ I )
37 dfrel4v 5503 . . 3 (Rel (1st ↾ I ) ↔ (1st ↾ I ) = {⟨𝑥, 𝑦⟩ ∣ 𝑥(1st ↾ I )𝑦})
3836, 37mpbi 219 . 2 (1st ↾ I ) = {⟨𝑥, 𝑦⟩ ∣ 𝑥(1st ↾ I )𝑦}
39 mptv 4679 . 2 (𝑥 ∈ V ↦ ⟨𝑥, 𝑥⟩) = {⟨𝑥, 𝑦⟩ ∣ 𝑦 = ⟨𝑥, 𝑥⟩}
4035, 38, 393eqtr4i 2642 1 (1st ↾ I ) = (𝑥 ∈ V ↦ ⟨𝑥, 𝑥⟩)
Colors of variables: wff setvar class
Syntax hints:  wb 195  wa 383   = wceq 1475  wex 1695  wcel 1977  Vcvv 3173  cop 4131   class class class wbr 4583  {copab 4642  cmpt 4643   I cid 4948  ccnv 5037  cres 5040  Rel wrel 5043   Fn wfn 5799  ontowfo 5802  cfv 5804  1st c1st 7057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fo 5810  df-fv 5812  df-1st 7059
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator