MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfid2 Structured version   Unicode version

Theorem dfid2 4738
Description: Alternate definition of the identity relation. (Contributed by NM, 15-Mar-2007.)
Assertion
Ref Expression
dfid2  |-  _I  =  { <. x ,  x >.  |  x  =  x }

Proof of Theorem dfid2
StepHypRef Expression
1 dfid3 4736 1  |-  _I  =  { <. x ,  x >.  |  x  =  x }
Colors of variables: wff setvar class
Syntax hints:    = wceq 1403   {copab 4449    _I cid 4730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1637  ax-4 1650  ax-5 1723  ax-6 1769  ax-7 1812  ax-10 1859  ax-11 1864  ax-12 1876  ax-13 2024  ax-ext 2378
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 974  df-tru 1406  df-ex 1632  df-nf 1636  df-sb 1762  df-clab 2386  df-cleq 2392  df-clel 2395  df-nfc 2550  df-rab 2760  df-v 3058  df-dif 3414  df-un 3416  df-in 3418  df-ss 3425  df-nul 3736  df-if 3883  df-sn 3970  df-pr 3972  df-op 3976  df-opab 4451  df-id 4735
This theorem is referenced by:  fsplit  6841
  Copyright terms: Public domain W3C validator