MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfid2 Structured version   Unicode version

Theorem dfid2 4749
Description: Alternate definition of the identity relation. (Contributed by NM, 15-Mar-2007.)
Assertion
Ref Expression
dfid2  |-  _I  =  { <. x ,  x >.  |  x  =  x }

Proof of Theorem dfid2
StepHypRef Expression
1 dfid3 4748 1  |-  _I  =  { <. x ,  x >.  |  x  =  x }
Colors of variables: wff setvar class
Syntax hints:    = wceq 1370   {copab 4460    _I cid 4742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-rab 2808  df-v 3080  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-sn 3989  df-pr 3991  df-op 3995  df-opab 4462  df-id 4747
This theorem is referenced by:  fsplit  6790
  Copyright terms: Public domain W3C validator