MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dff3 Structured version   Visualization version   GIF version

Theorem dff3 6280
Description: Alternate definition of a mapping. (Contributed by NM, 20-Mar-2007.)
Assertion
Ref Expression
dff3 (𝐹:𝐴𝐵 ↔ (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦

Proof of Theorem dff3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 fssxp 5973 . . 3 (𝐹:𝐴𝐵𝐹 ⊆ (𝐴 × 𝐵))
2 ffun 5961 . . . . . . . 8 (𝐹:𝐴𝐵 → Fun 𝐹)
3 fdm 5964 . . . . . . . . . 10 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
43eleq2d 2673 . . . . . . . . 9 (𝐹:𝐴𝐵 → (𝑥 ∈ dom 𝐹𝑥𝐴))
54biimpar 501 . . . . . . . 8 ((𝐹:𝐴𝐵𝑥𝐴) → 𝑥 ∈ dom 𝐹)
6 funfvop 6237 . . . . . . . 8 ((Fun 𝐹𝑥 ∈ dom 𝐹) → ⟨𝑥, (𝐹𝑥)⟩ ∈ 𝐹)
72, 5, 6syl2an2r 872 . . . . . . 7 ((𝐹:𝐴𝐵𝑥𝐴) → ⟨𝑥, (𝐹𝑥)⟩ ∈ 𝐹)
8 df-br 4584 . . . . . . 7 (𝑥𝐹(𝐹𝑥) ↔ ⟨𝑥, (𝐹𝑥)⟩ ∈ 𝐹)
97, 8sylibr 223 . . . . . 6 ((𝐹:𝐴𝐵𝑥𝐴) → 𝑥𝐹(𝐹𝑥))
10 fvex 6113 . . . . . . 7 (𝐹𝑥) ∈ V
11 breq2 4587 . . . . . . 7 (𝑦 = (𝐹𝑥) → (𝑥𝐹𝑦𝑥𝐹(𝐹𝑥)))
1210, 11spcev 3273 . . . . . 6 (𝑥𝐹(𝐹𝑥) → ∃𝑦 𝑥𝐹𝑦)
139, 12syl 17 . . . . 5 ((𝐹:𝐴𝐵𝑥𝐴) → ∃𝑦 𝑥𝐹𝑦)
14 funmo 5820 . . . . . . 7 (Fun 𝐹 → ∃*𝑦 𝑥𝐹𝑦)
152, 14syl 17 . . . . . 6 (𝐹:𝐴𝐵 → ∃*𝑦 𝑥𝐹𝑦)
1615adantr 480 . . . . 5 ((𝐹:𝐴𝐵𝑥𝐴) → ∃*𝑦 𝑥𝐹𝑦)
17 eu5 2484 . . . . 5 (∃!𝑦 𝑥𝐹𝑦 ↔ (∃𝑦 𝑥𝐹𝑦 ∧ ∃*𝑦 𝑥𝐹𝑦))
1813, 16, 17sylanbrc 695 . . . 4 ((𝐹:𝐴𝐵𝑥𝐴) → ∃!𝑦 𝑥𝐹𝑦)
1918ralrimiva 2949 . . 3 (𝐹:𝐴𝐵 → ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦)
201, 19jca 553 . 2 (𝐹:𝐴𝐵 → (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦))
21 xpss 5149 . . . . . . . 8 (𝐴 × 𝐵) ⊆ (V × V)
22 sstr 3576 . . . . . . . 8 ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (𝐴 × 𝐵) ⊆ (V × V)) → 𝐹 ⊆ (V × V))
2321, 22mpan2 703 . . . . . . 7 (𝐹 ⊆ (𝐴 × 𝐵) → 𝐹 ⊆ (V × V))
24 df-rel 5045 . . . . . . 7 (Rel 𝐹𝐹 ⊆ (V × V))
2523, 24sylibr 223 . . . . . 6 (𝐹 ⊆ (𝐴 × 𝐵) → Rel 𝐹)
2625adantr 480 . . . . 5 ((𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦) → Rel 𝐹)
27 df-ral 2901 . . . . . . 7 (∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦 ↔ ∀𝑥(𝑥𝐴 → ∃!𝑦 𝑥𝐹𝑦))
28 eumo 2487 . . . . . . . . . . . 12 (∃!𝑦 𝑥𝐹𝑦 → ∃*𝑦 𝑥𝐹𝑦)
2928imim2i 16 . . . . . . . . . . 11 ((𝑥𝐴 → ∃!𝑦 𝑥𝐹𝑦) → (𝑥𝐴 → ∃*𝑦 𝑥𝐹𝑦))
3029adantl 481 . . . . . . . . . 10 ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (𝑥𝐴 → ∃!𝑦 𝑥𝐹𝑦)) → (𝑥𝐴 → ∃*𝑦 𝑥𝐹𝑦))
31 df-br 4584 . . . . . . . . . . . . . . . 16 (𝑥𝐹𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐹)
32 ssel 3562 . . . . . . . . . . . . . . . 16 (𝐹 ⊆ (𝐴 × 𝐵) → (⟨𝑥, 𝑦⟩ ∈ 𝐹 → ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)))
3331, 32syl5bi 231 . . . . . . . . . . . . . . 15 (𝐹 ⊆ (𝐴 × 𝐵) → (𝑥𝐹𝑦 → ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)))
34 opelxp1 5074 . . . . . . . . . . . . . . 15 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) → 𝑥𝐴)
3533, 34syl6 34 . . . . . . . . . . . . . 14 (𝐹 ⊆ (𝐴 × 𝐵) → (𝑥𝐹𝑦𝑥𝐴))
3635exlimdv 1848 . . . . . . . . . . . . 13 (𝐹 ⊆ (𝐴 × 𝐵) → (∃𝑦 𝑥𝐹𝑦𝑥𝐴))
3736con3d 147 . . . . . . . . . . . 12 (𝐹 ⊆ (𝐴 × 𝐵) → (¬ 𝑥𝐴 → ¬ ∃𝑦 𝑥𝐹𝑦))
38 exmo 2483 . . . . . . . . . . . . 13 (∃𝑦 𝑥𝐹𝑦 ∨ ∃*𝑦 𝑥𝐹𝑦)
3938ori 389 . . . . . . . . . . . 12 (¬ ∃𝑦 𝑥𝐹𝑦 → ∃*𝑦 𝑥𝐹𝑦)
4037, 39syl6 34 . . . . . . . . . . 11 (𝐹 ⊆ (𝐴 × 𝐵) → (¬ 𝑥𝐴 → ∃*𝑦 𝑥𝐹𝑦))
4140adantr 480 . . . . . . . . . 10 ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (𝑥𝐴 → ∃!𝑦 𝑥𝐹𝑦)) → (¬ 𝑥𝐴 → ∃*𝑦 𝑥𝐹𝑦))
4230, 41pm2.61d 169 . . . . . . . . 9 ((𝐹 ⊆ (𝐴 × 𝐵) ∧ (𝑥𝐴 → ∃!𝑦 𝑥𝐹𝑦)) → ∃*𝑦 𝑥𝐹𝑦)
4342ex 449 . . . . . . . 8 (𝐹 ⊆ (𝐴 × 𝐵) → ((𝑥𝐴 → ∃!𝑦 𝑥𝐹𝑦) → ∃*𝑦 𝑥𝐹𝑦))
4443alimdv 1832 . . . . . . 7 (𝐹 ⊆ (𝐴 × 𝐵) → (∀𝑥(𝑥𝐴 → ∃!𝑦 𝑥𝐹𝑦) → ∀𝑥∃*𝑦 𝑥𝐹𝑦))
4527, 44syl5bi 231 . . . . . 6 (𝐹 ⊆ (𝐴 × 𝐵) → (∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦 → ∀𝑥∃*𝑦 𝑥𝐹𝑦))
4645imp 444 . . . . 5 ((𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦) → ∀𝑥∃*𝑦 𝑥𝐹𝑦)
47 dffun6 5819 . . . . 5 (Fun 𝐹 ↔ (Rel 𝐹 ∧ ∀𝑥∃*𝑦 𝑥𝐹𝑦))
4826, 46, 47sylanbrc 695 . . . 4 ((𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦) → Fun 𝐹)
49 dmss 5245 . . . . . . 7 (𝐹 ⊆ (𝐴 × 𝐵) → dom 𝐹 ⊆ dom (𝐴 × 𝐵))
50 dmxpss 5484 . . . . . . 7 dom (𝐴 × 𝐵) ⊆ 𝐴
5149, 50syl6ss 3580 . . . . . 6 (𝐹 ⊆ (𝐴 × 𝐵) → dom 𝐹𝐴)
52 breq1 4586 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑥𝐹𝑦𝑧𝐹𝑦))
5352eubidv 2478 . . . . . . . . 9 (𝑥 = 𝑧 → (∃!𝑦 𝑥𝐹𝑦 ↔ ∃!𝑦 𝑧𝐹𝑦))
5453rspccv 3279 . . . . . . . 8 (∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦 → (𝑧𝐴 → ∃!𝑦 𝑧𝐹𝑦))
55 euex 2482 . . . . . . . . 9 (∃!𝑦 𝑧𝐹𝑦 → ∃𝑦 𝑧𝐹𝑦)
56 vex 3176 . . . . . . . . . 10 𝑧 ∈ V
5756eldm 5243 . . . . . . . . 9 (𝑧 ∈ dom 𝐹 ↔ ∃𝑦 𝑧𝐹𝑦)
5855, 57sylibr 223 . . . . . . . 8 (∃!𝑦 𝑧𝐹𝑦𝑧 ∈ dom 𝐹)
5954, 58syl6 34 . . . . . . 7 (∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦 → (𝑧𝐴𝑧 ∈ dom 𝐹))
6059ssrdv 3574 . . . . . 6 (∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦𝐴 ⊆ dom 𝐹)
6151, 60anim12i 588 . . . . 5 ((𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦) → (dom 𝐹𝐴𝐴 ⊆ dom 𝐹))
62 eqss 3583 . . . . 5 (dom 𝐹 = 𝐴 ↔ (dom 𝐹𝐴𝐴 ⊆ dom 𝐹))
6361, 62sylibr 223 . . . 4 ((𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦) → dom 𝐹 = 𝐴)
64 df-fn 5807 . . . 4 (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴))
6548, 63, 64sylanbrc 695 . . 3 ((𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦) → 𝐹 Fn 𝐴)
66 rnss 5275 . . . . 5 (𝐹 ⊆ (𝐴 × 𝐵) → ran 𝐹 ⊆ ran (𝐴 × 𝐵))
67 rnxpss 5485 . . . . 5 ran (𝐴 × 𝐵) ⊆ 𝐵
6866, 67syl6ss 3580 . . . 4 (𝐹 ⊆ (𝐴 × 𝐵) → ran 𝐹𝐵)
6968adantr 480 . . 3 ((𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦) → ran 𝐹𝐵)
70 df-f 5808 . . 3 (𝐹:𝐴𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝐵))
7165, 69, 70sylanbrc 695 . 2 ((𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦) → 𝐹:𝐴𝐵)
7220, 71impbii 198 1 (𝐹:𝐴𝐵 ↔ (𝐹 ⊆ (𝐴 × 𝐵) ∧ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  wal 1473   = wceq 1475  wex 1695  wcel 1977  ∃!weu 2458  ∃*wmo 2459  wral 2896  Vcvv 3173  wss 3540  cop 4131   class class class wbr 4583   × cxp 5036  dom cdm 5038  ran crn 5039  Rel wrel 5043  Fun wfun 5798   Fn wfn 5799  wf 5800  cfv 5804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812
This theorem is referenced by:  dff4  6281  seqomlem2  7433
  Copyright terms: Public domain W3C validator