MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dff3 Structured version   Visualization version   Unicode version

Theorem dff3 6050
Description: Alternate definition of a mapping. (Contributed by NM, 20-Mar-2007.)
Assertion
Ref Expression
dff3  |-  ( F : A --> B  <->  ( F  C_  ( A  X.  B
)  /\  A. x  e.  A  E! y  x F y ) )
Distinct variable groups:    x, y, A    x, B, y    x, F, y

Proof of Theorem dff3
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 fssxp 5753 . . 3  |-  ( F : A --> B  ->  F  C_  ( A  X.  B ) )
2 ffun 5742 . . . . . . . . 9  |-  ( F : A --> B  ->  Fun  F )
32adantr 472 . . . . . . . 8  |-  ( ( F : A --> B  /\  x  e.  A )  ->  Fun  F )
4 fdm 5745 . . . . . . . . . 10  |-  ( F : A --> B  ->  dom  F  =  A )
54eleq2d 2534 . . . . . . . . 9  |-  ( F : A --> B  -> 
( x  e.  dom  F  <-> 
x  e.  A ) )
65biimpar 493 . . . . . . . 8  |-  ( ( F : A --> B  /\  x  e.  A )  ->  x  e.  dom  F
)
7 funfvop 6009 . . . . . . . 8  |-  ( ( Fun  F  /\  x  e.  dom  F )  ->  <. x ,  ( F `
 x ) >.  e.  F )
83, 6, 7syl2anc 673 . . . . . . 7  |-  ( ( F : A --> B  /\  x  e.  A )  -> 
<. x ,  ( F `
 x ) >.  e.  F )
9 df-br 4396 . . . . . . 7  |-  ( x F ( F `  x )  <->  <. x ,  ( F `  x
) >.  e.  F )
108, 9sylibr 217 . . . . . 6  |-  ( ( F : A --> B  /\  x  e.  A )  ->  x F ( F `
 x ) )
11 fvex 5889 . . . . . . 7  |-  ( F `
 x )  e. 
_V
12 breq2 4399 . . . . . . 7  |-  ( y  =  ( F `  x )  ->  (
x F y  <->  x F
( F `  x
) ) )
1311, 12spcev 3127 . . . . . 6  |-  ( x F ( F `  x )  ->  E. y  x F y )
1410, 13syl 17 . . . . 5  |-  ( ( F : A --> B  /\  x  e.  A )  ->  E. y  x F y )
15 funmo 5605 . . . . . . 7  |-  ( Fun 
F  ->  E* y  x F y )
162, 15syl 17 . . . . . 6  |-  ( F : A --> B  ->  E* y  x F
y )
1716adantr 472 . . . . 5  |-  ( ( F : A --> B  /\  x  e.  A )  ->  E* y  x F y )
18 eu5 2345 . . . . 5  |-  ( E! y  x F y  <-> 
( E. y  x F y  /\  E* y  x F y ) )
1914, 17, 18sylanbrc 677 . . . 4  |-  ( ( F : A --> B  /\  x  e.  A )  ->  E! y  x F y )
2019ralrimiva 2809 . . 3  |-  ( F : A --> B  ->  A. x  e.  A  E! y  x F
y )
211, 20jca 541 . 2  |-  ( F : A --> B  -> 
( F  C_  ( A  X.  B )  /\  A. x  e.  A  E! y  x F y ) )
22 xpss 4946 . . . . . . . 8  |-  ( A  X.  B )  C_  ( _V  X.  _V )
23 sstr 3426 . . . . . . . 8  |-  ( ( F  C_  ( A  X.  B )  /\  ( A  X.  B )  C_  ( _V  X.  _V )
)  ->  F  C_  ( _V  X.  _V ) )
2422, 23mpan2 685 . . . . . . 7  |-  ( F 
C_  ( A  X.  B )  ->  F  C_  ( _V  X.  _V ) )
25 df-rel 4846 . . . . . . 7  |-  ( Rel 
F  <->  F  C_  ( _V 
X.  _V ) )
2624, 25sylibr 217 . . . . . 6  |-  ( F 
C_  ( A  X.  B )  ->  Rel  F )
2726adantr 472 . . . . 5  |-  ( ( F  C_  ( A  X.  B )  /\  A. x  e.  A  E! y  x F y )  ->  Rel  F )
28 df-ral 2761 . . . . . . 7  |-  ( A. x  e.  A  E! y  x F y  <->  A. x
( x  e.  A  ->  E! y  x F y ) )
29 eumo 2348 . . . . . . . . . . . 12  |-  ( E! y  x F y  ->  E* y  x F y )
3029imim2i 16 . . . . . . . . . . 11  |-  ( ( x  e.  A  ->  E! y  x F
y )  ->  (
x  e.  A  ->  E* y  x F
y ) )
3130adantl 473 . . . . . . . . . 10  |-  ( ( F  C_  ( A  X.  B )  /\  (
x  e.  A  ->  E! y  x F
y ) )  -> 
( x  e.  A  ->  E* y  x F y ) )
32 df-br 4396 . . . . . . . . . . . . . . . 16  |-  ( x F y  <->  <. x ,  y >.  e.  F
)
33 ssel 3412 . . . . . . . . . . . . . . . 16  |-  ( F 
C_  ( A  X.  B )  ->  ( <. x ,  y >.  e.  F  ->  <. x ,  y >.  e.  ( A  X.  B ) ) )
3432, 33syl5bi 225 . . . . . . . . . . . . . . 15  |-  ( F 
C_  ( A  X.  B )  ->  (
x F y  ->  <. x ,  y >.  e.  ( A  X.  B
) ) )
35 opelxp1 4872 . . . . . . . . . . . . . . 15  |-  ( <.
x ,  y >.  e.  ( A  X.  B
)  ->  x  e.  A )
3634, 35syl6 33 . . . . . . . . . . . . . 14  |-  ( F 
C_  ( A  X.  B )  ->  (
x F y  ->  x  e.  A )
)
3736exlimdv 1787 . . . . . . . . . . . . 13  |-  ( F 
C_  ( A  X.  B )  ->  ( E. y  x F
y  ->  x  e.  A ) )
3837con3d 140 . . . . . . . . . . . 12  |-  ( F 
C_  ( A  X.  B )  ->  ( -.  x  e.  A  ->  -.  E. y  x F y ) )
39 exmo 2344 . . . . . . . . . . . . 13  |-  ( E. y  x F y  \/  E* y  x F y )
4039ori 382 . . . . . . . . . . . 12  |-  ( -. 
E. y  x F y  ->  E* y  x F y )
4138, 40syl6 33 . . . . . . . . . . 11  |-  ( F 
C_  ( A  X.  B )  ->  ( -.  x  e.  A  ->  E* y  x F y ) )
4241adantr 472 . . . . . . . . . 10  |-  ( ( F  C_  ( A  X.  B )  /\  (
x  e.  A  ->  E! y  x F
y ) )  -> 
( -.  x  e.  A  ->  E* y  x F y ) )
4331, 42pm2.61d 163 . . . . . . . . 9  |-  ( ( F  C_  ( A  X.  B )  /\  (
x  e.  A  ->  E! y  x F
y ) )  ->  E* y  x F
y )
4443ex 441 . . . . . . . 8  |-  ( F 
C_  ( A  X.  B )  ->  (
( x  e.  A  ->  E! y  x F y )  ->  E* y  x F y ) )
4544alimdv 1771 . . . . . . 7  |-  ( F 
C_  ( A  X.  B )  ->  ( A. x ( x  e.  A  ->  E! y  x F y )  ->  A. x E* y  x F y ) )
4628, 45syl5bi 225 . . . . . 6  |-  ( F 
C_  ( A  X.  B )  ->  ( A. x  e.  A  E! y  x F
y  ->  A. x E* y  x F
y ) )
4746imp 436 . . . . 5  |-  ( ( F  C_  ( A  X.  B )  /\  A. x  e.  A  E! y  x F y )  ->  A. x E* y  x F y )
48 dffun6 5604 . . . . 5  |-  ( Fun 
F  <->  ( Rel  F  /\  A. x E* y  x F y ) )
4927, 47, 48sylanbrc 677 . . . 4  |-  ( ( F  C_  ( A  X.  B )  /\  A. x  e.  A  E! y  x F y )  ->  Fun  F )
50 dmss 5039 . . . . . . 7  |-  ( F 
C_  ( A  X.  B )  ->  dom  F 
C_  dom  ( A  X.  B ) )
51 dmxpss 5274 . . . . . . 7  |-  dom  ( A  X.  B )  C_  A
5250, 51syl6ss 3430 . . . . . 6  |-  ( F 
C_  ( A  X.  B )  ->  dom  F 
C_  A )
53 breq1 4398 . . . . . . . . . 10  |-  ( x  =  z  ->  (
x F y  <->  z F
y ) )
5453eubidv 2339 . . . . . . . . 9  |-  ( x  =  z  ->  ( E! y  x F
y  <->  E! y  z F y ) )
5554rspccv 3133 . . . . . . . 8  |-  ( A. x  e.  A  E! y  x F y  -> 
( z  e.  A  ->  E! y  z F y ) )
56 euex 2343 . . . . . . . . 9  |-  ( E! y  z F y  ->  E. y  z F y )
57 vex 3034 . . . . . . . . . 10  |-  z  e. 
_V
5857eldm 5037 . . . . . . . . 9  |-  ( z  e.  dom  F  <->  E. y 
z F y )
5956, 58sylibr 217 . . . . . . . 8  |-  ( E! y  z F y  ->  z  e.  dom  F )
6055, 59syl6 33 . . . . . . 7  |-  ( A. x  e.  A  E! y  x F y  -> 
( z  e.  A  ->  z  e.  dom  F
) )
6160ssrdv 3424 . . . . . 6  |-  ( A. x  e.  A  E! y  x F y  ->  A  C_  dom  F )
6252, 61anim12i 576 . . . . 5  |-  ( ( F  C_  ( A  X.  B )  /\  A. x  e.  A  E! y  x F y )  ->  ( dom  F  C_  A  /\  A  C_  dom  F ) )
63 eqss 3433 . . . . 5  |-  ( dom 
F  =  A  <->  ( dom  F 
C_  A  /\  A  C_ 
dom  F ) )
6462, 63sylibr 217 . . . 4  |-  ( ( F  C_  ( A  X.  B )  /\  A. x  e.  A  E! y  x F y )  ->  dom  F  =  A )
65 df-fn 5592 . . . 4  |-  ( F  Fn  A  <->  ( Fun  F  /\  dom  F  =  A ) )
6649, 64, 65sylanbrc 677 . . 3  |-  ( ( F  C_  ( A  X.  B )  /\  A. x  e.  A  E! y  x F y )  ->  F  Fn  A
)
67 rnss 5069 . . . . 5  |-  ( F 
C_  ( A  X.  B )  ->  ran  F 
C_  ran  ( A  X.  B ) )
68 rnxpss 5275 . . . . 5  |-  ran  ( A  X.  B )  C_  B
6967, 68syl6ss 3430 . . . 4  |-  ( F 
C_  ( A  X.  B )  ->  ran  F 
C_  B )
7069adantr 472 . . 3  |-  ( ( F  C_  ( A  X.  B )  /\  A. x  e.  A  E! y  x F y )  ->  ran  F  C_  B
)
71 df-f 5593 . . 3  |-  ( F : A --> B  <->  ( F  Fn  A  /\  ran  F  C_  B ) )
7266, 70, 71sylanbrc 677 . 2  |-  ( ( F  C_  ( A  X.  B )  /\  A. x  e.  A  E! y  x F y )  ->  F : A --> B )
7321, 72impbii 192 1  |-  ( F : A --> B  <->  ( F  C_  ( A  X.  B
)  /\  A. x  e.  A  E! y  x F y ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 376   A.wal 1450    = wceq 1452   E.wex 1671    e. wcel 1904   E!weu 2319   E*wmo 2320   A.wral 2756   _Vcvv 3031    C_ wss 3390   <.cop 3965   class class class wbr 4395    X. cxp 4837   dom cdm 4839   ran crn 4840   Rel wrel 4844   Fun wfun 5583    Fn wfn 5584   -->wf 5585   ` cfv 5589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pr 4639
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3033  df-sbc 3256  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-br 4396  df-opab 4455  df-id 4754  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-fv 5597
This theorem is referenced by:  dff4  6051  seqomlem2  7186
  Copyright terms: Public domain W3C validator