Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalem38 Structured version   Visualization version   GIF version

Theorem dalem38 34014
Description: Lemma for dath 34040. Plane 𝑌 belongs to the 3-dimensional volume 𝐺𝐻𝐼𝑐. (Contributed by NM, 5-Aug-2012.)
Hypotheses
Ref Expression
dalem.ph (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
dalem.l = (le‘𝐾)
dalem.j = (join‘𝐾)
dalem.a 𝐴 = (Atoms‘𝐾)
dalem.ps (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
dalem38.m = (meet‘𝐾)
dalem38.o 𝑂 = (LPlanes‘𝐾)
dalem38.y 𝑌 = ((𝑃 𝑄) 𝑅)
dalem38.z 𝑍 = ((𝑆 𝑇) 𝑈)
dalem38.g 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
dalem38.h 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
dalem38.i 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
Assertion
Ref Expression
dalem38 ((𝜑𝑌 = 𝑍𝜓) → 𝑌 (((𝐺 𝐻) 𝐼) 𝑐))

Proof of Theorem dalem38
StepHypRef Expression
1 dalem38.y . 2 𝑌 = ((𝑃 𝑄) 𝑅)
2 dalem.ph . . . . . . 7 (𝜑 ↔ (((𝐾 ∈ HL ∧ 𝐶 ∈ (Base‘𝐾)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) ∧ (𝑌𝑂𝑍𝑂) ∧ ((¬ 𝐶 (𝑃 𝑄) ∧ ¬ 𝐶 (𝑄 𝑅) ∧ ¬ 𝐶 (𝑅 𝑃)) ∧ (¬ 𝐶 (𝑆 𝑇) ∧ ¬ 𝐶 (𝑇 𝑈) ∧ ¬ 𝐶 (𝑈 𝑆)) ∧ (𝐶 (𝑃 𝑆) ∧ 𝐶 (𝑄 𝑇) ∧ 𝐶 (𝑅 𝑈)))))
3 dalem.l . . . . . . 7 = (le‘𝐾)
4 dalem.j . . . . . . 7 = (join‘𝐾)
5 dalem.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
6 dalem.ps . . . . . . 7 (𝜓 ↔ ((𝑐𝐴𝑑𝐴) ∧ ¬ 𝑐 𝑌 ∧ (𝑑𝑐 ∧ ¬ 𝑑 𝑌𝐶 (𝑐 𝑑))))
7 dalem38.m . . . . . . 7 = (meet‘𝐾)
8 dalem38.o . . . . . . 7 𝑂 = (LPlanes‘𝐾)
9 dalem38.z . . . . . . 7 𝑍 = ((𝑆 𝑇) 𝑈)
10 dalem38.g . . . . . . 7 𝐺 = ((𝑐 𝑃) (𝑑 𝑆))
112, 3, 4, 5, 6, 7, 8, 1, 9, 10dalem28 34004 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝑃 (𝐺 𝑐))
12 dalem38.h . . . . . . 7 𝐻 = ((𝑐 𝑄) (𝑑 𝑇))
132, 3, 4, 5, 6, 7, 8, 1, 9, 12dalem33 34009 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝑄 (𝐻 𝑐))
142dalemkelat 33928 . . . . . . . 8 (𝜑𝐾 ∈ Lat)
15143ad2ant1 1075 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ Lat)
162, 5dalempeb 33943 . . . . . . . 8 (𝜑𝑃 ∈ (Base‘𝐾))
17163ad2ant1 1075 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → 𝑃 ∈ (Base‘𝐾))
182dalemkehl 33927 . . . . . . . . 9 (𝜑𝐾 ∈ HL)
19183ad2ant1 1075 . . . . . . . 8 ((𝜑𝑌 = 𝑍𝜓) → 𝐾 ∈ HL)
202, 3, 4, 5, 6, 7, 8, 1, 9, 10dalem23 34000 . . . . . . . 8 ((𝜑𝑌 = 𝑍𝜓) → 𝐺𝐴)
216dalemccea 33987 . . . . . . . . 9 (𝜓𝑐𝐴)
22213ad2ant3 1077 . . . . . . . 8 ((𝜑𝑌 = 𝑍𝜓) → 𝑐𝐴)
23 eqid 2610 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
2423, 4, 5hlatjcl 33671 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝐺𝐴𝑐𝐴) → (𝐺 𝑐) ∈ (Base‘𝐾))
2519, 20, 22, 24syl3anc 1318 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → (𝐺 𝑐) ∈ (Base‘𝐾))
262, 5dalemqeb 33944 . . . . . . . 8 (𝜑𝑄 ∈ (Base‘𝐾))
27263ad2ant1 1075 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → 𝑄 ∈ (Base‘𝐾))
282, 3, 4, 5, 6, 7, 8, 1, 9, 12dalem29 34005 . . . . . . . 8 ((𝜑𝑌 = 𝑍𝜓) → 𝐻𝐴)
2923, 4, 5hlatjcl 33671 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝐻𝐴𝑐𝐴) → (𝐻 𝑐) ∈ (Base‘𝐾))
3019, 28, 22, 29syl3anc 1318 . . . . . . 7 ((𝜑𝑌 = 𝑍𝜓) → (𝐻 𝑐) ∈ (Base‘𝐾))
3123, 3, 4latjlej12 16890 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ (𝐺 𝑐) ∈ (Base‘𝐾)) ∧ (𝑄 ∈ (Base‘𝐾) ∧ (𝐻 𝑐) ∈ (Base‘𝐾))) → ((𝑃 (𝐺 𝑐) ∧ 𝑄 (𝐻 𝑐)) → (𝑃 𝑄) ((𝐺 𝑐) (𝐻 𝑐))))
3215, 17, 25, 27, 30, 31syl122anc 1327 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → ((𝑃 (𝐺 𝑐) ∧ 𝑄 (𝐻 𝑐)) → (𝑃 𝑄) ((𝐺 𝑐) (𝐻 𝑐))))
3311, 13, 32mp2and 711 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → (𝑃 𝑄) ((𝐺 𝑐) (𝐻 𝑐)))
3423, 5atbase 33594 . . . . . . 7 (𝐺𝐴𝐺 ∈ (Base‘𝐾))
3520, 34syl 17 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝐺 ∈ (Base‘𝐾))
3623, 5atbase 33594 . . . . . . 7 (𝐻𝐴𝐻 ∈ (Base‘𝐾))
3728, 36syl 17 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝐻 ∈ (Base‘𝐾))
386, 5dalemcceb 33993 . . . . . . 7 (𝜓𝑐 ∈ (Base‘𝐾))
39383ad2ant3 1077 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝑐 ∈ (Base‘𝐾))
4023, 4latjjdir 16927 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝐺 ∈ (Base‘𝐾) ∧ 𝐻 ∈ (Base‘𝐾) ∧ 𝑐 ∈ (Base‘𝐾))) → ((𝐺 𝐻) 𝑐) = ((𝐺 𝑐) (𝐻 𝑐)))
4115, 35, 37, 39, 40syl13anc 1320 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝑐) = ((𝐺 𝑐) (𝐻 𝑐)))
4233, 41breqtrrd 4611 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → (𝑃 𝑄) ((𝐺 𝐻) 𝑐))
43 dalem38.i . . . . 5 𝐼 = ((𝑐 𝑅) (𝑑 𝑈))
442, 3, 4, 5, 6, 7, 8, 1, 9, 43dalem37 34013 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝑅 (𝐼 𝑐))
452, 4, 5dalempjqeb 33949 . . . . . 6 (𝜑 → (𝑃 𝑄) ∈ (Base‘𝐾))
46453ad2ant1 1075 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → (𝑃 𝑄) ∈ (Base‘𝐾))
4723, 4, 5hlatjcl 33671 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝐺𝐴𝐻𝐴) → (𝐺 𝐻) ∈ (Base‘𝐾))
4819, 20, 28, 47syl3anc 1318 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → (𝐺 𝐻) ∈ (Base‘𝐾))
4923, 4latjcl 16874 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝐺 𝐻) ∈ (Base‘𝐾) ∧ 𝑐 ∈ (Base‘𝐾)) → ((𝐺 𝐻) 𝑐) ∈ (Base‘𝐾))
5015, 48, 39, 49syl3anc 1318 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → ((𝐺 𝐻) 𝑐) ∈ (Base‘𝐾))
512, 5dalemreb 33945 . . . . . 6 (𝜑𝑅 ∈ (Base‘𝐾))
52513ad2ant1 1075 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → 𝑅 ∈ (Base‘𝐾))
532, 3, 4, 5, 6, 7, 8, 1, 9, 43dalem34 34010 . . . . . 6 ((𝜑𝑌 = 𝑍𝜓) → 𝐼𝐴)
5423, 4, 5hlatjcl 33671 . . . . . 6 ((𝐾 ∈ HL ∧ 𝐼𝐴𝑐𝐴) → (𝐼 𝑐) ∈ (Base‘𝐾))
5519, 53, 22, 54syl3anc 1318 . . . . 5 ((𝜑𝑌 = 𝑍𝜓) → (𝐼 𝑐) ∈ (Base‘𝐾))
5623, 3, 4latjlej12 16890 . . . . 5 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) ∈ (Base‘𝐾) ∧ ((𝐺 𝐻) 𝑐) ∈ (Base‘𝐾)) ∧ (𝑅 ∈ (Base‘𝐾) ∧ (𝐼 𝑐) ∈ (Base‘𝐾))) → (((𝑃 𝑄) ((𝐺 𝐻) 𝑐) ∧ 𝑅 (𝐼 𝑐)) → ((𝑃 𝑄) 𝑅) (((𝐺 𝐻) 𝑐) (𝐼 𝑐))))
5715, 46, 50, 52, 55, 56syl122anc 1327 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → (((𝑃 𝑄) ((𝐺 𝐻) 𝑐) ∧ 𝑅 (𝐼 𝑐)) → ((𝑃 𝑄) 𝑅) (((𝐺 𝐻) 𝑐) (𝐼 𝑐))))
5842, 44, 57mp2and 711 . . 3 ((𝜑𝑌 = 𝑍𝜓) → ((𝑃 𝑄) 𝑅) (((𝐺 𝐻) 𝑐) (𝐼 𝑐)))
5923, 5atbase 33594 . . . . 5 (𝐼𝐴𝐼 ∈ (Base‘𝐾))
6053, 59syl 17 . . . 4 ((𝜑𝑌 = 𝑍𝜓) → 𝐼 ∈ (Base‘𝐾))
6123, 4latjjdir 16927 . . . 4 ((𝐾 ∈ Lat ∧ ((𝐺 𝐻) ∈ (Base‘𝐾) ∧ 𝐼 ∈ (Base‘𝐾) ∧ 𝑐 ∈ (Base‘𝐾))) → (((𝐺 𝐻) 𝐼) 𝑐) = (((𝐺 𝐻) 𝑐) (𝐼 𝑐)))
6215, 48, 60, 39, 61syl13anc 1320 . . 3 ((𝜑𝑌 = 𝑍𝜓) → (((𝐺 𝐻) 𝐼) 𝑐) = (((𝐺 𝐻) 𝑐) (𝐼 𝑐)))
6358, 62breqtrrd 4611 . 2 ((𝜑𝑌 = 𝑍𝜓) → ((𝑃 𝑄) 𝑅) (((𝐺 𝐻) 𝐼) 𝑐))
641, 63syl5eqbr 4618 1 ((𝜑𝑌 = 𝑍𝜓) → 𝑌 (((𝐺 𝐻) 𝐼) 𝑐))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  cfv 5804  (class class class)co 6549  Basecbs 15695  lecple 15775  joincjn 16767  meetcmee 16768  Latclat 16868  Atomscatm 33568  HLchlt 33655  LPlanesclpl 33796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-lat 16869  df-clat 16931  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-llines 33802  df-lplanes 33803
This theorem is referenced by:  dalem39  34015
  Copyright terms: Public domain W3C validator