Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  curry2val Structured version   Visualization version   GIF version

Theorem curry2val 7161
 Description: The value of a curried function with a constant second argument. (Contributed by NM, 16-Dec-2008.)
Hypothesis
Ref Expression
curry2.1 𝐺 = (𝐹(1st ↾ (V × {𝐶})))
Assertion
Ref Expression
curry2val ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) → (𝐺𝐷) = (𝐷𝐹𝐶))

Proof of Theorem curry2val
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 curry2.1 . . . 4 𝐺 = (𝐹(1st ↾ (V × {𝐶})))
21curry2 7159 . . 3 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) → 𝐺 = (𝑥𝐴 ↦ (𝑥𝐹𝐶)))
32fveq1d 6105 . 2 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) → (𝐺𝐷) = ((𝑥𝐴 ↦ (𝑥𝐹𝐶))‘𝐷))
4 eqid 2610 . . . . . . . . . . 11 (𝑥𝐴 ↦ (𝑥𝐹𝐶)) = (𝑥𝐴 ↦ (𝑥𝐹𝐶))
54dmmptss 5548 . . . . . . . . . 10 dom (𝑥𝐴 ↦ (𝑥𝐹𝐶)) ⊆ 𝐴
65sseli 3564 . . . . . . . . 9 (𝐷 ∈ dom (𝑥𝐴 ↦ (𝑥𝐹𝐶)) → 𝐷𝐴)
76con3i 149 . . . . . . . 8 𝐷𝐴 → ¬ 𝐷 ∈ dom (𝑥𝐴 ↦ (𝑥𝐹𝐶)))
8 ndmfv 6128 . . . . . . . 8 𝐷 ∈ dom (𝑥𝐴 ↦ (𝑥𝐹𝐶)) → ((𝑥𝐴 ↦ (𝑥𝐹𝐶))‘𝐷) = ∅)
97, 8syl 17 . . . . . . 7 𝐷𝐴 → ((𝑥𝐴 ↦ (𝑥𝐹𝐶))‘𝐷) = ∅)
109adantl 481 . . . . . 6 ((𝐹 Fn (𝐴 × 𝐵) ∧ ¬ 𝐷𝐴) → ((𝑥𝐴 ↦ (𝑥𝐹𝐶))‘𝐷) = ∅)
11 fndm 5904 . . . . . . 7 (𝐹 Fn (𝐴 × 𝐵) → dom 𝐹 = (𝐴 × 𝐵))
12 simpl 472 . . . . . . . 8 ((𝐷𝐴𝐶𝐵) → 𝐷𝐴)
1312con3i 149 . . . . . . 7 𝐷𝐴 → ¬ (𝐷𝐴𝐶𝐵))
14 ndmovg 6715 . . . . . . 7 ((dom 𝐹 = (𝐴 × 𝐵) ∧ ¬ (𝐷𝐴𝐶𝐵)) → (𝐷𝐹𝐶) = ∅)
1511, 13, 14syl2an 493 . . . . . 6 ((𝐹 Fn (𝐴 × 𝐵) ∧ ¬ 𝐷𝐴) → (𝐷𝐹𝐶) = ∅)
1610, 15eqtr4d 2647 . . . . 5 ((𝐹 Fn (𝐴 × 𝐵) ∧ ¬ 𝐷𝐴) → ((𝑥𝐴 ↦ (𝑥𝐹𝐶))‘𝐷) = (𝐷𝐹𝐶))
1716ex 449 . . . 4 (𝐹 Fn (𝐴 × 𝐵) → (¬ 𝐷𝐴 → ((𝑥𝐴 ↦ (𝑥𝐹𝐶))‘𝐷) = (𝐷𝐹𝐶)))
1817adantr 480 . . 3 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) → (¬ 𝐷𝐴 → ((𝑥𝐴 ↦ (𝑥𝐹𝐶))‘𝐷) = (𝐷𝐹𝐶)))
19 oveq1 6556 . . . 4 (𝑥 = 𝐷 → (𝑥𝐹𝐶) = (𝐷𝐹𝐶))
20 ovex 6577 . . . 4 (𝐷𝐹𝐶) ∈ V
2119, 4, 20fvmpt 6191 . . 3 (𝐷𝐴 → ((𝑥𝐴 ↦ (𝑥𝐹𝐶))‘𝐷) = (𝐷𝐹𝐶))
2218, 21pm2.61d2 171 . 2 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) → ((𝑥𝐴 ↦ (𝑥𝐹𝐶))‘𝐷) = (𝐷𝐹𝐶))
233, 22eqtrd 2644 1 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐵) → (𝐺𝐷) = (𝐷𝐹𝐶))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  Vcvv 3173  ∅c0 3874  {csn 4125   ↦ cmpt 4643   × cxp 5036  ◡ccnv 5037  dom cdm 5038   ↾ cres 5040   ∘ ccom 5042   Fn wfn 5799  ‘cfv 5804  (class class class)co 6549  1st c1st 7057 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-1st 7059  df-2nd 7060 This theorem is referenced by:  curry2ima  28869
 Copyright terms: Public domain W3C validator