MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curry2val Structured version   Unicode version

Theorem curry2val 6782
Description: The value of a curried function with a constant second argument. (Contributed by NM, 16-Dec-2008.)
Hypothesis
Ref Expression
curry2.1  |-  G  =  ( F  o.  `' ( 1st  |`  ( _V  X.  { C } ) ) )
Assertion
Ref Expression
curry2val  |-  ( ( F  Fn  ( A  X.  B )  /\  C  e.  B )  ->  ( G `  D
)  =  ( D F C ) )

Proof of Theorem curry2val
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 curry2.1 . . . 4  |-  G  =  ( F  o.  `' ( 1st  |`  ( _V  X.  { C } ) ) )
21curry2 6780 . . 3  |-  ( ( F  Fn  ( A  X.  B )  /\  C  e.  B )  ->  G  =  ( x  e.  A  |->  ( x F C ) ) )
32fveq1d 5804 . 2  |-  ( ( F  Fn  ( A  X.  B )  /\  C  e.  B )  ->  ( G `  D
)  =  ( ( x  e.  A  |->  ( x F C ) ) `  D ) )
4 eqid 2454 . . . . . . . . . . 11  |-  ( x  e.  A  |->  ( x F C ) )  =  ( x  e.  A  |->  ( x F C ) )
54dmmptss 5445 . . . . . . . . . 10  |-  dom  (
x  e.  A  |->  ( x F C ) )  C_  A
65sseli 3463 . . . . . . . . 9  |-  ( D  e.  dom  ( x  e.  A  |->  ( x F C ) )  ->  D  e.  A
)
76con3i 135 . . . . . . . 8  |-  ( -.  D  e.  A  ->  -.  D  e.  dom  ( x  e.  A  |->  ( x F C ) ) )
8 ndmfv 5826 . . . . . . . 8  |-  ( -.  D  e.  dom  (
x  e.  A  |->  ( x F C ) )  ->  ( (
x  e.  A  |->  ( x F C ) ) `  D )  =  (/) )
97, 8syl 16 . . . . . . 7  |-  ( -.  D  e.  A  -> 
( ( x  e.  A  |->  ( x F C ) ) `  D )  =  (/) )
109adantl 466 . . . . . 6  |-  ( ( F  Fn  ( A  X.  B )  /\  -.  D  e.  A
)  ->  ( (
x  e.  A  |->  ( x F C ) ) `  D )  =  (/) )
11 fndm 5621 . . . . . . 7  |-  ( F  Fn  ( A  X.  B )  ->  dom  F  =  ( A  X.  B ) )
12 simpl 457 . . . . . . . 8  |-  ( ( D  e.  A  /\  C  e.  B )  ->  D  e.  A )
1312con3i 135 . . . . . . 7  |-  ( -.  D  e.  A  ->  -.  ( D  e.  A  /\  C  e.  B
) )
14 ndmovg 6359 . . . . . . 7  |-  ( ( dom  F  =  ( A  X.  B )  /\  -.  ( D  e.  A  /\  C  e.  B ) )  -> 
( D F C )  =  (/) )
1511, 13, 14syl2an 477 . . . . . 6  |-  ( ( F  Fn  ( A  X.  B )  /\  -.  D  e.  A
)  ->  ( D F C )  =  (/) )
1610, 15eqtr4d 2498 . . . . 5  |-  ( ( F  Fn  ( A  X.  B )  /\  -.  D  e.  A
)  ->  ( (
x  e.  A  |->  ( x F C ) ) `  D )  =  ( D F C ) )
1716ex 434 . . . 4  |-  ( F  Fn  ( A  X.  B )  ->  ( -.  D  e.  A  ->  ( ( x  e.  A  |->  ( x F C ) ) `  D )  =  ( D F C ) ) )
1817adantr 465 . . 3  |-  ( ( F  Fn  ( A  X.  B )  /\  C  e.  B )  ->  ( -.  D  e.  A  ->  ( (
x  e.  A  |->  ( x F C ) ) `  D )  =  ( D F C ) ) )
19 oveq1 6210 . . . 4  |-  ( x  =  D  ->  (
x F C )  =  ( D F C ) )
20 ovex 6228 . . . 4  |-  ( D F C )  e. 
_V
2119, 4, 20fvmpt 5886 . . 3  |-  ( D  e.  A  ->  (
( x  e.  A  |->  ( x F C ) ) `  D
)  =  ( D F C ) )
2218, 21pm2.61d2 160 . 2  |-  ( ( F  Fn  ( A  X.  B )  /\  C  e.  B )  ->  ( ( x  e.  A  |->  ( x F C ) ) `  D )  =  ( D F C ) )
233, 22eqtrd 2495 1  |-  ( ( F  Fn  ( A  X.  B )  /\  C  e.  B )  ->  ( G `  D
)  =  ( D F C ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   _Vcvv 3078   (/)c0 3748   {csn 3988    |-> cmpt 4461    X. cxp 4949   `'ccnv 4950   dom cdm 4951    |` cres 4953    o. ccom 4955    Fn wfn 5524   ` cfv 5529  (class class class)co 6203   1stc1st 6688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-sn 3989  df-pr 3991  df-op 3995  df-uni 4203  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-id 4747  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-ov 6206  df-1st 6690  df-2nd 6691
This theorem is referenced by:  curry2ima  26181
  Copyright terms: Public domain W3C validator