MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curry1val Structured version   Visualization version   GIF version

Theorem curry1val 7157
Description: The value of a curried function with a constant first argument. (Contributed by NM, 28-Mar-2008.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypothesis
Ref Expression
curry1.1 𝐺 = (𝐹(2nd ↾ ({𝐶} × V)))
Assertion
Ref Expression
curry1val ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴) → (𝐺𝐷) = (𝐶𝐹𝐷))

Proof of Theorem curry1val
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 curry1.1 . . . 4 𝐺 = (𝐹(2nd ↾ ({𝐶} × V)))
21curry1 7156 . . 3 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴) → 𝐺 = (𝑥𝐵 ↦ (𝐶𝐹𝑥)))
32fveq1d 6105 . 2 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴) → (𝐺𝐷) = ((𝑥𝐵 ↦ (𝐶𝐹𝑥))‘𝐷))
4 eqid 2610 . . . . . . . . . 10 (𝑥𝐵 ↦ (𝐶𝐹𝑥)) = (𝑥𝐵 ↦ (𝐶𝐹𝑥))
54dmmptss 5548 . . . . . . . . 9 dom (𝑥𝐵 ↦ (𝐶𝐹𝑥)) ⊆ 𝐵
65sseli 3564 . . . . . . . 8 (𝐷 ∈ dom (𝑥𝐵 ↦ (𝐶𝐹𝑥)) → 𝐷𝐵)
76con3i 149 . . . . . . 7 𝐷𝐵 → ¬ 𝐷 ∈ dom (𝑥𝐵 ↦ (𝐶𝐹𝑥)))
8 ndmfv 6128 . . . . . . 7 𝐷 ∈ dom (𝑥𝐵 ↦ (𝐶𝐹𝑥)) → ((𝑥𝐵 ↦ (𝐶𝐹𝑥))‘𝐷) = ∅)
97, 8syl 17 . . . . . 6 𝐷𝐵 → ((𝑥𝐵 ↦ (𝐶𝐹𝑥))‘𝐷) = ∅)
109adantl 481 . . . . 5 (((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴) ∧ ¬ 𝐷𝐵) → ((𝑥𝐵 ↦ (𝐶𝐹𝑥))‘𝐷) = ∅)
11 fndm 5904 . . . . . . 7 (𝐹 Fn (𝐴 × 𝐵) → dom 𝐹 = (𝐴 × 𝐵))
1211adantr 480 . . . . . 6 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴) → dom 𝐹 = (𝐴 × 𝐵))
13 simpr 476 . . . . . . 7 ((𝐶𝐴𝐷𝐵) → 𝐷𝐵)
1413con3i 149 . . . . . 6 𝐷𝐵 → ¬ (𝐶𝐴𝐷𝐵))
15 ndmovg 6715 . . . . . 6 ((dom 𝐹 = (𝐴 × 𝐵) ∧ ¬ (𝐶𝐴𝐷𝐵)) → (𝐶𝐹𝐷) = ∅)
1612, 14, 15syl2an 493 . . . . 5 (((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴) ∧ ¬ 𝐷𝐵) → (𝐶𝐹𝐷) = ∅)
1710, 16eqtr4d 2647 . . . 4 (((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴) ∧ ¬ 𝐷𝐵) → ((𝑥𝐵 ↦ (𝐶𝐹𝑥))‘𝐷) = (𝐶𝐹𝐷))
1817ex 449 . . 3 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴) → (¬ 𝐷𝐵 → ((𝑥𝐵 ↦ (𝐶𝐹𝑥))‘𝐷) = (𝐶𝐹𝐷)))
19 oveq2 6557 . . . 4 (𝑥 = 𝐷 → (𝐶𝐹𝑥) = (𝐶𝐹𝐷))
20 ovex 6577 . . . 4 (𝐶𝐹𝐷) ∈ V
2119, 4, 20fvmpt 6191 . . 3 (𝐷𝐵 → ((𝑥𝐵 ↦ (𝐶𝐹𝑥))‘𝐷) = (𝐶𝐹𝐷))
2218, 21pm2.61d2 171 . 2 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴) → ((𝑥𝐵 ↦ (𝐶𝐹𝑥))‘𝐷) = (𝐶𝐹𝐷))
233, 22eqtrd 2644 1 ((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐶𝐴) → (𝐺𝐷) = (𝐶𝐹𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  c0 3874  {csn 4125  cmpt 4643   × cxp 5036  ccnv 5037  dom cdm 5038  cres 5040  ccom 5042   Fn wfn 5799  cfv 5804  (class class class)co 6549  2nd c2nd 7058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-1st 7059  df-2nd 7060
This theorem is referenced by:  nvinvfval  26879  hhssabloilem  27502
  Copyright terms: Public domain W3C validator