MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  curry1val Structured version   Unicode version

Theorem curry1val 6844
Description: The value of a curried function with a constant first argument. (Contributed by NM, 28-Mar-2008.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypothesis
Ref Expression
curry1.1  |-  G  =  ( F  o.  `' ( 2nd  |`  ( { C }  X.  _V )
) )
Assertion
Ref Expression
curry1val  |-  ( ( F  Fn  ( A  X.  B )  /\  C  e.  A )  ->  ( G `  D
)  =  ( C F D ) )

Proof of Theorem curry1val
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 curry1.1 . . . 4  |-  G  =  ( F  o.  `' ( 2nd  |`  ( { C }  X.  _V )
) )
21curry1 6843 . . 3  |-  ( ( F  Fn  ( A  X.  B )  /\  C  e.  A )  ->  G  =  ( x  e.  B  |->  ( C F x ) ) )
32fveq1d 5827 . 2  |-  ( ( F  Fn  ( A  X.  B )  /\  C  e.  A )  ->  ( G `  D
)  =  ( ( x  e.  B  |->  ( C F x ) ) `  D ) )
4 eqid 2428 . . . . . . . . . 10  |-  ( x  e.  B  |->  ( C F x ) )  =  ( x  e.  B  |->  ( C F x ) )
54dmmptss 5293 . . . . . . . . 9  |-  dom  (
x  e.  B  |->  ( C F x ) )  C_  B
65sseli 3403 . . . . . . . 8  |-  ( D  e.  dom  ( x  e.  B  |->  ( C F x ) )  ->  D  e.  B
)
76con3i 140 . . . . . . 7  |-  ( -.  D  e.  B  ->  -.  D  e.  dom  ( x  e.  B  |->  ( C F x ) ) )
8 ndmfv 5849 . . . . . . 7  |-  ( -.  D  e.  dom  (
x  e.  B  |->  ( C F x ) )  ->  ( (
x  e.  B  |->  ( C F x ) ) `  D )  =  (/) )
97, 8syl 17 . . . . . 6  |-  ( -.  D  e.  B  -> 
( ( x  e.  B  |->  ( C F x ) ) `  D )  =  (/) )
109adantl 467 . . . . 5  |-  ( ( ( F  Fn  ( A  X.  B )  /\  C  e.  A )  /\  -.  D  e.  B
)  ->  ( (
x  e.  B  |->  ( C F x ) ) `  D )  =  (/) )
11 fndm 5636 . . . . . . 7  |-  ( F  Fn  ( A  X.  B )  ->  dom  F  =  ( A  X.  B ) )
1211adantr 466 . . . . . 6  |-  ( ( F  Fn  ( A  X.  B )  /\  C  e.  A )  ->  dom  F  =  ( A  X.  B ) )
13 simpr 462 . . . . . . 7  |-  ( ( C  e.  A  /\  D  e.  B )  ->  D  e.  B )
1413con3i 140 . . . . . 6  |-  ( -.  D  e.  B  ->  -.  ( C  e.  A  /\  D  e.  B
) )
15 ndmovg 6410 . . . . . 6  |-  ( ( dom  F  =  ( A  X.  B )  /\  -.  ( C  e.  A  /\  D  e.  B ) )  -> 
( C F D )  =  (/) )
1612, 14, 15syl2an 479 . . . . 5  |-  ( ( ( F  Fn  ( A  X.  B )  /\  C  e.  A )  /\  -.  D  e.  B
)  ->  ( C F D )  =  (/) )
1710, 16eqtr4d 2465 . . . 4  |-  ( ( ( F  Fn  ( A  X.  B )  /\  C  e.  A )  /\  -.  D  e.  B
)  ->  ( (
x  e.  B  |->  ( C F x ) ) `  D )  =  ( C F D ) )
1817ex 435 . . 3  |-  ( ( F  Fn  ( A  X.  B )  /\  C  e.  A )  ->  ( -.  D  e.  B  ->  ( (
x  e.  B  |->  ( C F x ) ) `  D )  =  ( C F D ) ) )
19 oveq2 6257 . . . 4  |-  ( x  =  D  ->  ( C F x )  =  ( C F D ) )
20 ovex 6277 . . . 4  |-  ( C F D )  e. 
_V
2119, 4, 20fvmpt 5908 . . 3  |-  ( D  e.  B  ->  (
( x  e.  B  |->  ( C F x ) ) `  D
)  =  ( C F D ) )
2218, 21pm2.61d2 163 . 2  |-  ( ( F  Fn  ( A  X.  B )  /\  C  e.  A )  ->  ( ( x  e.  B  |->  ( C F x ) ) `  D )  =  ( C F D ) )
233, 22eqtrd 2462 1  |-  ( ( F  Fn  ( A  X.  B )  /\  C  e.  A )  ->  ( G `  D
)  =  ( C F D ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 370    = wceq 1437    e. wcel 1872   _Vcvv 3022   (/)c0 3704   {csn 3941    |-> cmpt 4425    X. cxp 4794   `'ccnv 4795   dom cdm 4796    |` cres 4798    o. ccom 4800    Fn wfn 5539   ` cfv 5544  (class class class)co 6249   2ndc2nd 6750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408  ax-sep 4489  ax-nul 4498  ax-pow 4545  ax-pr 4603  ax-un 6541
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2280  df-mo 2281  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-ne 2601  df-ral 2719  df-rex 2720  df-rab 2723  df-v 3024  df-sbc 3243  df-csb 3339  df-dif 3382  df-un 3384  df-in 3386  df-ss 3393  df-nul 3705  df-if 3855  df-sn 3942  df-pr 3944  df-op 3948  df-uni 4163  df-iun 4244  df-br 4367  df-opab 4426  df-mpt 4427  df-id 4711  df-xp 4802  df-rel 4803  df-cnv 4804  df-co 4805  df-dm 4806  df-rn 4807  df-res 4808  df-ima 4809  df-iota 5508  df-fun 5546  df-fn 5547  df-f 5548  df-f1 5549  df-fo 5550  df-f1o 5551  df-fv 5552  df-ov 6252  df-1st 6751  df-2nd 6752
This theorem is referenced by:  nvinvfval  26203  hhssabloi  26855
  Copyright terms: Public domain W3C validator