Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnviun Structured version   Visualization version   GIF version

Theorem cnviun 36961
Description: Converse of indexed union. (Contributed by RP, 20-Jun-2020.)
Assertion
Ref Expression
cnviun 𝑥𝐴 𝐵 = 𝑥𝐴 𝐵
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem cnviun
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 5422 . 2 Rel 𝑥𝐴 𝐵
2 reliun 5162 . . 3 (Rel 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 Rel 𝐵)
3 relcnv 5422 . . . 4 Rel 𝐵
43a1i 11 . . 3 (𝑥𝐴 → Rel 𝐵)
52, 4mprgbir 2911 . 2 Rel 𝑥𝐴 𝐵
6 vex 3176 . . . . . 6 𝑦 ∈ V
7 vex 3176 . . . . . 6 𝑧 ∈ V
86, 7opelcnv 5226 . . . . 5 (⟨𝑦, 𝑧⟩ ∈ 𝐵 ↔ ⟨𝑧, 𝑦⟩ ∈ 𝐵)
98bicomi 213 . . . 4 (⟨𝑧, 𝑦⟩ ∈ 𝐵 ↔ ⟨𝑦, 𝑧⟩ ∈ 𝐵)
109rexbii 3023 . . 3 (∃𝑥𝐴𝑧, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑥𝐴𝑦, 𝑧⟩ ∈ 𝐵)
116, 7opelcnv 5226 . . . 4 (⟨𝑦, 𝑧⟩ ∈ 𝑥𝐴 𝐵 ↔ ⟨𝑧, 𝑦⟩ ∈ 𝑥𝐴 𝐵)
12 eliun 4460 . . . 4 (⟨𝑧, 𝑦⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴𝑧, 𝑦⟩ ∈ 𝐵)
1311, 12bitri 263 . . 3 (⟨𝑦, 𝑧⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴𝑧, 𝑦⟩ ∈ 𝐵)
14 eliun 4460 . . 3 (⟨𝑦, 𝑧⟩ ∈ 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴𝑦, 𝑧⟩ ∈ 𝐵)
1510, 13, 143bitr4i 291 . 2 (⟨𝑦, 𝑧⟩ ∈ 𝑥𝐴 𝐵 ↔ ⟨𝑦, 𝑧⟩ ∈ 𝑥𝐴 𝐵)
161, 5, 15eqrelriiv 5137 1 𝑥𝐴 𝐵 = 𝑥𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1475  wcel 1977  wrex 2897  cop 4131   ciun 4455  ccnv 5037  Rel wrel 5043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-iun 4457  df-br 4584  df-opab 4644  df-xp 5044  df-rel 5045  df-cnv 5046
This theorem is referenced by:  cnvtrclfv  37035
  Copyright terms: Public domain W3C validator