Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnviun | Structured version Visualization version GIF version |
Description: Converse of indexed union. (Contributed by RP, 20-Jun-2020.) |
Ref | Expression |
---|---|
cnviun | ⊢ ◡∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 ◡𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 5422 | . 2 ⊢ Rel ◡∪ 𝑥 ∈ 𝐴 𝐵 | |
2 | reliun 5162 | . . 3 ⊢ (Rel ∪ 𝑥 ∈ 𝐴 ◡𝐵 ↔ ∀𝑥 ∈ 𝐴 Rel ◡𝐵) | |
3 | relcnv 5422 | . . . 4 ⊢ Rel ◡𝐵 | |
4 | 3 | a1i 11 | . . 3 ⊢ (𝑥 ∈ 𝐴 → Rel ◡𝐵) |
5 | 2, 4 | mprgbir 2911 | . 2 ⊢ Rel ∪ 𝑥 ∈ 𝐴 ◡𝐵 |
6 | vex 3176 | . . . . . 6 ⊢ 𝑦 ∈ V | |
7 | vex 3176 | . . . . . 6 ⊢ 𝑧 ∈ V | |
8 | 6, 7 | opelcnv 5226 | . . . . 5 ⊢ (〈𝑦, 𝑧〉 ∈ ◡𝐵 ↔ 〈𝑧, 𝑦〉 ∈ 𝐵) |
9 | 8 | bicomi 213 | . . . 4 ⊢ (〈𝑧, 𝑦〉 ∈ 𝐵 ↔ 〈𝑦, 𝑧〉 ∈ ◡𝐵) |
10 | 9 | rexbii 3023 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 〈𝑧, 𝑦〉 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐴 〈𝑦, 𝑧〉 ∈ ◡𝐵) |
11 | 6, 7 | opelcnv 5226 | . . . 4 ⊢ (〈𝑦, 𝑧〉 ∈ ◡∪ 𝑥 ∈ 𝐴 𝐵 ↔ 〈𝑧, 𝑦〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) |
12 | eliun 4460 | . . . 4 ⊢ (〈𝑧, 𝑦〉 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 〈𝑧, 𝑦〉 ∈ 𝐵) | |
13 | 11, 12 | bitri 263 | . . 3 ⊢ (〈𝑦, 𝑧〉 ∈ ◡∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 〈𝑧, 𝑦〉 ∈ 𝐵) |
14 | eliun 4460 | . . 3 ⊢ (〈𝑦, 𝑧〉 ∈ ∪ 𝑥 ∈ 𝐴 ◡𝐵 ↔ ∃𝑥 ∈ 𝐴 〈𝑦, 𝑧〉 ∈ ◡𝐵) | |
15 | 10, 13, 14 | 3bitr4i 291 | . 2 ⊢ (〈𝑦, 𝑧〉 ∈ ◡∪ 𝑥 ∈ 𝐴 𝐵 ↔ 〈𝑦, 𝑧〉 ∈ ∪ 𝑥 ∈ 𝐴 ◡𝐵) |
16 | 1, 5, 15 | eqrelriiv 5137 | 1 ⊢ ◡∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 ◡𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1475 ∈ wcel 1977 ∃wrex 2897 〈cop 4131 ∪ ciun 4455 ◡ccnv 5037 Rel wrel 5043 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-iun 4457 df-br 4584 df-opab 4644 df-xp 5044 df-rel 5045 df-cnv 5046 |
This theorem is referenced by: cnvtrclfv 37035 |
Copyright terms: Public domain | W3C validator |