MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvcnvsn Structured version   Visualization version   GIF version

Theorem cnvcnvsn 5530
Description: Double converse of a singleton of an ordered pair. (Unlike cnvsn 5536, this does not need any sethood assumptions on 𝐴 and 𝐵.) (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
cnvcnvsn {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩}

Proof of Theorem cnvcnvsn
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 5422 . 2 Rel {⟨𝐴, 𝐵⟩}
2 relcnv 5422 . 2 Rel {⟨𝐵, 𝐴⟩}
3 vex 3176 . . . 4 𝑥 ∈ V
4 vex 3176 . . . 4 𝑦 ∈ V
53, 4opelcnv 5226 . . 3 (⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐵⟩})
6 ancom 465 . . . . . 6 ((𝑥 = 𝐴𝑦 = 𝐵) ↔ (𝑦 = 𝐵𝑥 = 𝐴))
73, 4opth 4871 . . . . . 6 (⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝑥 = 𝐴𝑦 = 𝐵))
84, 3opth 4871 . . . . . 6 (⟨𝑦, 𝑥⟩ = ⟨𝐵, 𝐴⟩ ↔ (𝑦 = 𝐵𝑥 = 𝐴))
96, 7, 83bitr4i 291 . . . . 5 (⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩ ↔ ⟨𝑦, 𝑥⟩ = ⟨𝐵, 𝐴⟩)
10 opex 4859 . . . . . 6 𝑥, 𝑦⟩ ∈ V
1110elsn 4140 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑥, 𝑦⟩ = ⟨𝐴, 𝐵⟩)
12 opex 4859 . . . . . 6 𝑦, 𝑥⟩ ∈ V
1312elsn 4140 . . . . 5 (⟨𝑦, 𝑥⟩ ∈ {⟨𝐵, 𝐴⟩} ↔ ⟨𝑦, 𝑥⟩ = ⟨𝐵, 𝐴⟩)
149, 11, 133bitr4i 291 . . . 4 (⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑦, 𝑥⟩ ∈ {⟨𝐵, 𝐴⟩})
154, 3opelcnv 5226 . . . 4 (⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩})
163, 4opelcnv 5226 . . . 4 (⟨𝑥, 𝑦⟩ ∈ {⟨𝐵, 𝐴⟩} ↔ ⟨𝑦, 𝑥⟩ ∈ {⟨𝐵, 𝐴⟩})
1714, 15, 163bitr4i 291 . . 3 (⟨𝑦, 𝑥⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝐵, 𝐴⟩})
185, 17bitri 263 . 2 (⟨𝑥, 𝑦⟩ ∈ {⟨𝐴, 𝐵⟩} ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝐵, 𝐴⟩})
191, 2, 18eqrelriiv 5137 1 {⟨𝐴, 𝐵⟩} = {⟨𝐵, 𝐴⟩}
Colors of variables: wff setvar class
Syntax hints:  wa 383   = wceq 1475  wcel 1977  {csn 4125  cop 4131  ccnv 5037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-xp 5044  df-rel 5045  df-cnv 5046
This theorem is referenced by:  rnsnopg  5532  cnvsn  5536  strlemor1  15796
  Copyright terms: Public domain W3C validator