MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmsnsnsn Structured version   Visualization version   GIF version

Theorem dmsnsnsn 5531
Description: The domain of the singleton of the singleton of a singleton. (Contributed by NM, 15-Sep-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
dmsnsnsn dom {{{𝐴}}} = {𝐴}

Proof of Theorem dmsnsnsn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3176 . . . . . . . 8 𝑥 ∈ V
21opid 4359 . . . . . . 7 𝑥, 𝑥⟩ = {{𝑥}}
3 sneq 4135 . . . . . . . 8 (𝑥 = 𝐴 → {𝑥} = {𝐴})
43sneqd 4137 . . . . . . 7 (𝑥 = 𝐴 → {{𝑥}} = {{𝐴}})
52, 4syl5eq 2656 . . . . . 6 (𝑥 = 𝐴 → ⟨𝑥, 𝑥⟩ = {{𝐴}})
65sneqd 4137 . . . . 5 (𝑥 = 𝐴 → {⟨𝑥, 𝑥⟩} = {{{𝐴}}})
76dmeqd 5248 . . . 4 (𝑥 = 𝐴 → dom {⟨𝑥, 𝑥⟩} = dom {{{𝐴}}})
87, 3eqeq12d 2625 . . 3 (𝑥 = 𝐴 → (dom {⟨𝑥, 𝑥⟩} = {𝑥} ↔ dom {{{𝐴}}} = {𝐴}))
91dmsnop 5527 . . 3 dom {⟨𝑥, 𝑥⟩} = {𝑥}
108, 9vtoclg 3239 . 2 (𝐴 ∈ V → dom {{{𝐴}}} = {𝐴})
11 0ex 4718 . . . . 5 ∅ ∈ V
1211snid 4155 . . . 4 ∅ ∈ {∅}
13 dmsn0el 5522 . . . 4 (∅ ∈ {∅} → dom {{∅}} = ∅)
1412, 13ax-mp 5 . . 3 dom {{∅}} = ∅
15 snprc 4197 . . . . . . 7 𝐴 ∈ V ↔ {𝐴} = ∅)
1615biimpi 205 . . . . . 6 𝐴 ∈ V → {𝐴} = ∅)
1716sneqd 4137 . . . . 5 𝐴 ∈ V → {{𝐴}} = {∅})
1817sneqd 4137 . . . 4 𝐴 ∈ V → {{{𝐴}}} = {{∅}})
1918dmeqd 5248 . . 3 𝐴 ∈ V → dom {{{𝐴}}} = dom {{∅}})
2014, 19, 163eqtr4a 2670 . 2 𝐴 ∈ V → dom {{{𝐴}}} = {𝐴})
2110, 20pm2.61i 175 1 dom {{{𝐴}}} = {𝐴}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1475  wcel 1977  Vcvv 3173  c0 3874  {csn 4125  cop 4131  dom cdm 5038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-xp 5044  df-dm 5048
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator