MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvcnvsn Structured version   Unicode version

Theorem cnvcnvsn 5485
Description: Double converse of a singleton of an ordered pair. (Unlike cnvsn 5491, this does not need any sethood assumptions on  A and  B.) (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
cnvcnvsn  |-  `' `' { <. A ,  B >. }  =  `' { <. B ,  A >. }

Proof of Theorem cnvcnvsn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 5374 . 2  |-  Rel  `' `' { <. A ,  B >. }
2 relcnv 5374 . 2  |-  Rel  `' { <. B ,  A >. }
3 vex 3116 . . . 4  |-  x  e. 
_V
4 vex 3116 . . . 4  |-  y  e. 
_V
53, 4opelcnv 5184 . . 3  |-  ( <.
x ,  y >.  e.  `' `' { <. A ,  B >. }  <->  <. y ,  x >.  e.  `' { <. A ,  B >. } )
6 ancom 450 . . . . . 6  |-  ( ( x  =  A  /\  y  =  B )  <->  ( y  =  B  /\  x  =  A )
)
73, 4opth 4721 . . . . . 6  |-  ( <.
x ,  y >.  =  <. A ,  B >.  <-> 
( x  =  A  /\  y  =  B ) )
84, 3opth 4721 . . . . . 6  |-  ( <.
y ,  x >.  = 
<. B ,  A >.  <->  (
y  =  B  /\  x  =  A )
)
96, 7, 83bitr4i 277 . . . . 5  |-  ( <.
x ,  y >.  =  <. A ,  B >.  <->  <. y ,  x >.  = 
<. B ,  A >. )
10 opex 4711 . . . . . 6  |-  <. x ,  y >.  e.  _V
1110elsnc 4051 . . . . 5  |-  ( <.
x ,  y >.  e.  { <. A ,  B >. }  <->  <. x ,  y
>.  =  <. A ,  B >. )
12 opex 4711 . . . . . 6  |-  <. y ,  x >.  e.  _V
1312elsnc 4051 . . . . 5  |-  ( <.
y ,  x >.  e. 
{ <. B ,  A >. }  <->  <. y ,  x >.  =  <. B ,  A >. )
149, 11, 133bitr4i 277 . . . 4  |-  ( <.
x ,  y >.  e.  { <. A ,  B >. }  <->  <. y ,  x >.  e.  { <. B ,  A >. } )
154, 3opelcnv 5184 . . . 4  |-  ( <.
y ,  x >.  e.  `' { <. A ,  B >. }  <->  <. x ,  y
>.  e.  { <. A ,  B >. } )
163, 4opelcnv 5184 . . . 4  |-  ( <.
x ,  y >.  e.  `' { <. B ,  A >. }  <->  <. y ,  x >.  e.  { <. B ,  A >. } )
1714, 15, 163bitr4i 277 . . 3  |-  ( <.
y ,  x >.  e.  `' { <. A ,  B >. }  <->  <. x ,  y
>.  e.  `' { <. B ,  A >. } )
185, 17bitri 249 . 2  |-  ( <.
x ,  y >.  e.  `' `' { <. A ,  B >. }  <->  <. x ,  y
>.  e.  `' { <. B ,  A >. } )
191, 2, 18eqrelriiv 5097 1  |-  `' `' { <. A ,  B >. }  =  `' { <. B ,  A >. }
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369    = wceq 1379    e. wcel 1767   {csn 4027   <.cop 4033   `'ccnv 4998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-br 4448  df-opab 4506  df-xp 5005  df-rel 5006  df-cnv 5007
This theorem is referenced by:  rnsnopg  5487  cnvsn  5491  strlemor1  14582
  Copyright terms: Public domain W3C validator