Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cicer Structured version   Visualization version   GIF version

Theorem cicer 16289
 Description: Isomorphism is an equivalence relation on objects of a category. Remark 3.16 in [Adamek] p. 29. (Contributed by AV, 5-Apr-2020.)
Assertion
Ref Expression
cicer (𝐶 ∈ Cat → ( ≃𝑐𝐶) Er (Base‘𝐶))

Proof of Theorem cicer
Dummy variables 𝑓 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relopab 5169 . . . . . 6 Rel {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ ((Iso‘𝐶)‘⟨𝑥, 𝑦⟩) ≠ ∅)}
21a1i 11 . . . . 5 (𝐶 ∈ Cat → Rel {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ ((Iso‘𝐶)‘⟨𝑥, 𝑦⟩) ≠ ∅)})
3 fveq2 6103 . . . . . . . . 9 (𝑓 = ⟨𝑥, 𝑦⟩ → ((Iso‘𝐶)‘𝑓) = ((Iso‘𝐶)‘⟨𝑥, 𝑦⟩))
43neeq1d 2841 . . . . . . . 8 (𝑓 = ⟨𝑥, 𝑦⟩ → (((Iso‘𝐶)‘𝑓) ≠ ∅ ↔ ((Iso‘𝐶)‘⟨𝑥, 𝑦⟩) ≠ ∅))
54rabxp 5078 . . . . . . 7 {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ ((Iso‘𝐶)‘⟨𝑥, 𝑦⟩) ≠ ∅)}
65a1i 11 . . . . . 6 (𝐶 ∈ Cat → {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅} = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ ((Iso‘𝐶)‘⟨𝑥, 𝑦⟩) ≠ ∅)})
76releqd 5126 . . . . 5 (𝐶 ∈ Cat → (Rel {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅} ↔ Rel {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶) ∧ ((Iso‘𝐶)‘⟨𝑥, 𝑦⟩) ≠ ∅)}))
82, 7mpbird 246 . . . 4 (𝐶 ∈ Cat → Rel {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅})
9 isofn 16258 . . . . . 6 (𝐶 ∈ Cat → (Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)))
10 fvex 6113 . . . . . . 7 (Base‘𝐶) ∈ V
11 sqxpexg 6861 . . . . . . 7 ((Base‘𝐶) ∈ V → ((Base‘𝐶) × (Base‘𝐶)) ∈ V)
1210, 11mp1i 13 . . . . . 6 (𝐶 ∈ Cat → ((Base‘𝐶) × (Base‘𝐶)) ∈ V)
13 0ex 4718 . . . . . . 7 ∅ ∈ V
1413a1i 11 . . . . . 6 (𝐶 ∈ Cat → ∅ ∈ V)
15 suppvalfn 7189 . . . . . 6 (((Iso‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) ∧ ((Base‘𝐶) × (Base‘𝐶)) ∈ V ∧ ∅ ∈ V) → ((Iso‘𝐶) supp ∅) = {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅})
169, 12, 14, 15syl3anc 1318 . . . . 5 (𝐶 ∈ Cat → ((Iso‘𝐶) supp ∅) = {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅})
1716releqd 5126 . . . 4 (𝐶 ∈ Cat → (Rel ((Iso‘𝐶) supp ∅) ↔ Rel {𝑓 ∈ ((Base‘𝐶) × (Base‘𝐶)) ∣ ((Iso‘𝐶)‘𝑓) ≠ ∅}))
188, 17mpbird 246 . . 3 (𝐶 ∈ Cat → Rel ((Iso‘𝐶) supp ∅))
19 cicfval 16280 . . . 4 (𝐶 ∈ Cat → ( ≃𝑐𝐶) = ((Iso‘𝐶) supp ∅))
2019releqd 5126 . . 3 (𝐶 ∈ Cat → (Rel ( ≃𝑐𝐶) ↔ Rel ((Iso‘𝐶) supp ∅)))
2118, 20mpbird 246 . 2 (𝐶 ∈ Cat → Rel ( ≃𝑐𝐶))
22 cicsym 16287 . 2 ((𝐶 ∈ Cat ∧ 𝑥( ≃𝑐𝐶)𝑦) → 𝑦( ≃𝑐𝐶)𝑥)
23 cictr 16288 . . 3 ((𝐶 ∈ Cat ∧ 𝑥( ≃𝑐𝐶)𝑦𝑦( ≃𝑐𝐶)𝑧) → 𝑥( ≃𝑐𝐶)𝑧)
24233expb 1258 . 2 ((𝐶 ∈ Cat ∧ (𝑥( ≃𝑐𝐶)𝑦𝑦( ≃𝑐𝐶)𝑧)) → 𝑥( ≃𝑐𝐶)𝑧)
25 cicref 16284 . . 3 ((𝐶 ∈ Cat ∧ 𝑥 ∈ (Base‘𝐶)) → 𝑥( ≃𝑐𝐶)𝑥)
26 ciclcl 16285 . . 3 ((𝐶 ∈ Cat ∧ 𝑥( ≃𝑐𝐶)𝑥) → 𝑥 ∈ (Base‘𝐶))
2725, 26impbida 873 . 2 (𝐶 ∈ Cat → (𝑥 ∈ (Base‘𝐶) ↔ 𝑥( ≃𝑐𝐶)𝑥))
2821, 22, 24, 27iserd 7655 1 (𝐶 ∈ Cat → ( ≃𝑐𝐶) Er (Base‘𝐶))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  {crab 2900  Vcvv 3173  ∅c0 3874  ⟨cop 4131   class class class wbr 4583  {copab 4642   × cxp 5036  Rel wrel 5043   Fn wfn 5799  ‘cfv 5804  (class class class)co 6549   supp csupp 7182   Er wer 7626  Basecbs 15695  Catccat 16148  Isociso 16229   ≃𝑐 ccic 16278 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-supp 7183  df-er 7629  df-cat 16152  df-cid 16153  df-sect 16230  df-inv 16231  df-iso 16232  df-cic 16279 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator