Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemk41 | Structured version Visualization version GIF version |
Description: Part of proof of Lemma K of [Crawley] p. 118. TODO: fix comment. (Contributed by NM, 19-Jul-2013.) |
Ref | Expression |
---|---|
cdlemk41.y | ⊢ 𝑌 = ((𝑃 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) |
Ref | Expression |
---|---|
cdlemk41 | ⊢ (𝐺 ∈ 𝑇 → ⦋𝐺 / 𝑔⦌𝑌 = ((𝑃 ∨ (𝑅‘𝐺)) ∧ (𝑍 ∨ (𝑅‘(𝐺 ∘ ◡𝑏))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcvd 2752 | . 2 ⊢ (𝐺 ∈ 𝑇 → Ⅎ𝑔((𝑃 ∨ (𝑅‘𝐺)) ∧ (𝑍 ∨ (𝑅‘(𝐺 ∘ ◡𝑏))))) | |
2 | cdlemk41.y | . . 3 ⊢ 𝑌 = ((𝑃 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) | |
3 | fveq2 6103 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑅‘𝑔) = (𝑅‘𝐺)) | |
4 | 3 | oveq2d 6565 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝑃 ∨ (𝑅‘𝑔)) = (𝑃 ∨ (𝑅‘𝐺))) |
5 | coeq1 5201 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (𝑔 ∘ ◡𝑏) = (𝐺 ∘ ◡𝑏)) | |
6 | 5 | fveq2d 6107 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑅‘(𝑔 ∘ ◡𝑏)) = (𝑅‘(𝐺 ∘ ◡𝑏))) |
7 | 6 | oveq2d 6565 | . . . 4 ⊢ (𝑔 = 𝐺 → (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏))) = (𝑍 ∨ (𝑅‘(𝐺 ∘ ◡𝑏)))) |
8 | 4, 7 | oveq12d 6567 | . . 3 ⊢ (𝑔 = 𝐺 → ((𝑃 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) = ((𝑃 ∨ (𝑅‘𝐺)) ∧ (𝑍 ∨ (𝑅‘(𝐺 ∘ ◡𝑏))))) |
9 | 2, 8 | syl5eq 2656 | . 2 ⊢ (𝑔 = 𝐺 → 𝑌 = ((𝑃 ∨ (𝑅‘𝐺)) ∧ (𝑍 ∨ (𝑅‘(𝐺 ∘ ◡𝑏))))) |
10 | 1, 9 | csbiegf 3523 | 1 ⊢ (𝐺 ∈ 𝑇 → ⦋𝐺 / 𝑔⦌𝑌 = ((𝑃 ∨ (𝑅‘𝐺)) ∧ (𝑍 ∨ (𝑅‘(𝐺 ∘ ◡𝑏))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1475 ∈ wcel 1977 ⦋csb 3499 ◡ccnv 5037 ∘ ccom 5042 ‘cfv 5804 (class class class)co 6549 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-co 5047 df-iota 5768 df-fv 5812 df-ov 6552 |
This theorem is referenced by: cdlemkid2 35230 cdlemkfid3N 35231 cdlemky 35232 cdlemk42yN 35250 |
Copyright terms: Public domain | W3C validator |