Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk41 Structured version   Unicode version

Theorem cdlemk41 34883
Description: Part of proof of Lemma K of [Crawley] p. 118. TODO: fix comment. (Contributed by NM, 19-Jul-2013.)
Hypothesis
Ref Expression
cdlemk41.y  |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
g  o.  `' b ) ) ) )
Assertion
Ref Expression
cdlemk41  |-  ( G  e.  T  ->  [_ G  /  g ]_ Y  =  ( ( P 
.\/  ( R `  G ) )  ./\  ( Z  .\/  ( R `
 ( G  o.  `' b ) ) ) ) )
Distinct variable groups:    ./\ , g    .\/ , g    g, G    P, g    R, g    T, g    g, Z   
g, b
Allowed substitution hints:    P( b)    R( b)    T( b)    G( b)    .\/ ( b)    ./\ ( b)    Y( g,
b)    Z( b)

Proof of Theorem cdlemk41
StepHypRef Expression
1 nfcvd 2615 . 2  |-  ( G  e.  T  ->  F/_ g
( ( P  .\/  ( R `  G ) )  ./\  ( Z  .\/  ( R `  ( G  o.  `' b
) ) ) ) )
2 cdlemk41.y . . 3  |-  Y  =  ( ( P  .\/  ( R `  g ) )  ./\  ( Z  .\/  ( R `  (
g  o.  `' b ) ) ) )
3 fveq2 5794 . . . . 5  |-  ( g  =  G  ->  ( R `  g )  =  ( R `  G ) )
43oveq2d 6211 . . . 4  |-  ( g  =  G  ->  ( P  .\/  ( R `  g ) )  =  ( P  .\/  ( R `  G )
) )
5 coeq1 5100 . . . . . 6  |-  ( g  =  G  ->  (
g  o.  `' b )  =  ( G  o.  `' b ) )
65fveq2d 5798 . . . . 5  |-  ( g  =  G  ->  ( R `  ( g  o.  `' b ) )  =  ( R `  ( G  o.  `' b ) ) )
76oveq2d 6211 . . . 4  |-  ( g  =  G  ->  ( Z  .\/  ( R `  ( g  o.  `' b ) ) )  =  ( Z  .\/  ( R `  ( G  o.  `' b ) ) ) )
84, 7oveq12d 6213 . . 3  |-  ( g  =  G  ->  (
( P  .\/  ( R `  g )
)  ./\  ( Z  .\/  ( R `  (
g  o.  `' b ) ) ) )  =  ( ( P 
.\/  ( R `  G ) )  ./\  ( Z  .\/  ( R `
 ( G  o.  `' b ) ) ) ) )
92, 8syl5eq 2505 . 2  |-  ( g  =  G  ->  Y  =  ( ( P 
.\/  ( R `  G ) )  ./\  ( Z  .\/  ( R `
 ( G  o.  `' b ) ) ) ) )
101, 9csbiegf 3414 1  |-  ( G  e.  T  ->  [_ G  /  g ]_ Y  =  ( ( P 
.\/  ( R `  G ) )  ./\  ( Z  .\/  ( R `
 ( G  o.  `' b ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1370    e. wcel 1758   [_csb 3390   `'ccnv 4942    o. ccom 4947   ` cfv 5521  (class class class)co 6195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1954  ax-ext 2431
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2602  df-rex 2802  df-rab 2805  df-v 3074  df-sbc 3289  df-csb 3391  df-dif 3434  df-un 3436  df-in 3438  df-ss 3445  df-nul 3741  df-if 3895  df-sn 3981  df-pr 3983  df-op 3987  df-uni 4195  df-br 4396  df-opab 4454  df-co 4952  df-iota 5484  df-fv 5529  df-ov 6198
This theorem is referenced by:  cdlemkid2  34887  cdlemkfid3N  34888  cdlemky  34889  cdlemk42yN  34907
  Copyright terms: Public domain W3C validator