Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme42ke Structured version   Visualization version   GIF version

Theorem cdleme42ke 34791
 Description: Part of proof of Lemma E in [Crawley] p. 113. Remove 𝑅 ≠ 𝑆 condition. TODO: FIX COMMENT. (Contributed by NM, 2-Apr-2013.)
Hypotheses
Ref Expression
cdleme41.b 𝐵 = (Base‘𝐾)
cdleme41.l = (le‘𝐾)
cdleme41.j = (join‘𝐾)
cdleme41.m = (meet‘𝐾)
cdleme41.a 𝐴 = (Atoms‘𝐾)
cdleme41.h 𝐻 = (LHyp‘𝐾)
cdleme41.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme41.d 𝐷 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
cdleme41.e 𝐸 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
cdleme41.g 𝐺 = ((𝑃 𝑄) (𝐸 ((𝑠 𝑡) 𝑊)))
cdleme41.i 𝐼 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺))
cdleme41.n 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐷)
cdleme41.o 𝑂 = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (𝑁 (𝑥 𝑊))))
cdleme41.f 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥))
cdleme34e.v 𝑉 = ((𝑅 𝑆) 𝑊)
Assertion
Ref Expression
cdleme42ke ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊))) → ((𝐹𝑅) (𝐹𝑆)) = ((𝐹𝑅) 𝑉))
Distinct variable groups:   𝐴,𝑠   ,𝑠   ,𝑠   ,𝑠   𝑃,𝑠   𝑄,𝑠   𝑅,𝑠   𝑆,𝑠   𝑈,𝑠   𝑊,𝑠   𝑦,𝑡,𝐴,𝑠   𝐵,𝑠,𝑡,𝑦   𝑦,𝐷   𝑦,𝐺   𝐸,𝑠,𝑦   𝐻,𝑠,𝑡,𝑦   𝑡, ,𝑦   𝐾,𝑠,𝑡,𝑦   𝑡, ,𝑦   𝑡, ,𝑦   𝑡,𝑃,𝑦   𝑡,𝑄,𝑦   𝑡,𝑅,𝑦   𝑡,𝑆,𝑦   𝑡,𝑈,𝑦   𝑡,𝑊,𝑦   𝑥,𝑧,𝐴   𝑥,𝐵,𝑧   𝑧,𝐸,𝑠   𝑧,𝐻   𝑥, ,𝑧   𝑧,𝐾   𝑥, ,𝑧   𝑥, ,𝑧   𝑥,𝑁,𝑧   𝑥,𝑃,𝑧   𝑥,𝑄,𝑧   𝑥,𝑅,𝑧   𝑥,𝑆,𝑧   𝑥,𝑈,𝑧   𝑥,𝑊,𝑧,𝑠,𝑡,𝑦   𝑉,𝑠,𝑡,𝑥,𝑧
Allowed substitution hints:   𝐷(𝑥,𝑧,𝑡,𝑠)   𝐸(𝑥,𝑡)   𝐹(𝑥,𝑦,𝑧,𝑡,𝑠)   𝐺(𝑥,𝑧,𝑡,𝑠)   𝐻(𝑥)   𝐼(𝑥,𝑦,𝑧,𝑡,𝑠)   𝐾(𝑥)   𝑁(𝑦,𝑡,𝑠)   𝑂(𝑥,𝑦,𝑧,𝑡,𝑠)   𝑉(𝑦)

Proof of Theorem cdleme42ke
StepHypRef Expression
1 simpl1l 1105 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊))) → 𝐾 ∈ HL)
2 simpr2 1061 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊))) → (𝑅𝐴 ∧ ¬ 𝑅 𝑊))
3 cdleme41.b . . . . . . . 8 𝐵 = (Base‘𝐾)
4 cdleme41.l . . . . . . . 8 = (le‘𝐾)
5 cdleme41.j . . . . . . . 8 = (join‘𝐾)
6 cdleme41.m . . . . . . . 8 = (meet‘𝐾)
7 cdleme41.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
8 cdleme41.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
9 cdleme41.u . . . . . . . 8 𝑈 = ((𝑃 𝑄) 𝑊)
10 cdleme41.d . . . . . . . 8 𝐷 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
11 cdleme41.e . . . . . . . 8 𝐸 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
12 cdleme41.g . . . . . . . 8 𝐺 = ((𝑃 𝑄) (𝐸 ((𝑠 𝑡) 𝑊)))
13 cdleme41.i . . . . . . . 8 𝐼 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺))
14 cdleme41.n . . . . . . . 8 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐷)
15 cdleme41.o . . . . . . . 8 𝑂 = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (𝑁 (𝑥 𝑊))))
16 cdleme41.f . . . . . . . 8 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥))
173, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16cdleme32fvaw 34745 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ((𝐹𝑅) ∈ 𝐴 ∧ ¬ (𝐹𝑅) 𝑊))
182, 17syldan 486 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊))) → ((𝐹𝑅) ∈ 𝐴 ∧ ¬ (𝐹𝑅) 𝑊))
1918simpld 474 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊))) → (𝐹𝑅) ∈ 𝐴)
205, 7hlatjidm 33673 . . . . 5 ((𝐾 ∈ HL ∧ (𝐹𝑅) ∈ 𝐴) → ((𝐹𝑅) (𝐹𝑅)) = (𝐹𝑅))
211, 19, 20syl2anc 691 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊))) → ((𝐹𝑅) (𝐹𝑅)) = (𝐹𝑅))
22 fveq2 6103 . . . . 5 (𝑅 = 𝑆 → (𝐹𝑅) = (𝐹𝑆))
2322oveq2d 6565 . . . 4 (𝑅 = 𝑆 → ((𝐹𝑅) (𝐹𝑅)) = ((𝐹𝑅) (𝐹𝑆)))
2421, 23sylan9req 2665 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊))) ∧ 𝑅 = 𝑆) → (𝐹𝑅) = ((𝐹𝑅) (𝐹𝑆)))
25 simpr2l 1113 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊))) → 𝑅𝐴)
265, 7hlatjidm 33673 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑅𝐴) → (𝑅 𝑅) = 𝑅)
271, 25, 26syl2anc 691 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊))) → (𝑅 𝑅) = 𝑅)
2827oveq1d 6564 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊))) → ((𝑅 𝑅) 𝑊) = (𝑅 𝑊))
29 simpl1 1057 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
30 eqid 2610 . . . . . . . . 9 (0.‘𝐾) = (0.‘𝐾)
314, 6, 30, 7, 8lhpmat 34334 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝑅 𝑊) = (0.‘𝐾))
3229, 2, 31syl2anc 691 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊))) → (𝑅 𝑊) = (0.‘𝐾))
3328, 32eqtrd 2644 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊))) → ((𝑅 𝑅) 𝑊) = (0.‘𝐾))
3433oveq2d 6565 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊))) → ((𝐹𝑅) ((𝑅 𝑅) 𝑊)) = ((𝐹𝑅) (0.‘𝐾)))
35 hlol 33666 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OL)
361, 35syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊))) → 𝐾 ∈ OL)
373, 7atbase 33594 . . . . . . 7 ((𝐹𝑅) ∈ 𝐴 → (𝐹𝑅) ∈ 𝐵)
3819, 37syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊))) → (𝐹𝑅) ∈ 𝐵)
393, 5, 30olj01 33530 . . . . . 6 ((𝐾 ∈ OL ∧ (𝐹𝑅) ∈ 𝐵) → ((𝐹𝑅) (0.‘𝐾)) = (𝐹𝑅))
4036, 38, 39syl2anc 691 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊))) → ((𝐹𝑅) (0.‘𝐾)) = (𝐹𝑅))
4134, 40eqtrd 2644 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊))) → ((𝐹𝑅) ((𝑅 𝑅) 𝑊)) = (𝐹𝑅))
42 oveq2 6557 . . . . . . 7 (𝑅 = 𝑆 → (𝑅 𝑅) = (𝑅 𝑆))
4342oveq1d 6564 . . . . . 6 (𝑅 = 𝑆 → ((𝑅 𝑅) 𝑊) = ((𝑅 𝑆) 𝑊))
44 cdleme34e.v . . . . . 6 𝑉 = ((𝑅 𝑆) 𝑊)
4543, 44syl6eqr 2662 . . . . 5 (𝑅 = 𝑆 → ((𝑅 𝑅) 𝑊) = 𝑉)
4645oveq2d 6565 . . . 4 (𝑅 = 𝑆 → ((𝐹𝑅) ((𝑅 𝑅) 𝑊)) = ((𝐹𝑅) 𝑉))
4741, 46sylan9req 2665 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊))) ∧ 𝑅 = 𝑆) → (𝐹𝑅) = ((𝐹𝑅) 𝑉))
4824, 47eqtr3d 2646 . 2 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊))) ∧ 𝑅 = 𝑆) → ((𝐹𝑅) (𝐹𝑆)) = ((𝐹𝑅) 𝑉))
493, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 44cdleme42k 34790 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ 𝑅𝑆) → ((𝐹𝑅) (𝐹𝑆)) = ((𝐹𝑅) 𝑉))
50493expa 1257 . 2 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊))) ∧ 𝑅𝑆) → ((𝐹𝑅) (𝐹𝑆)) = ((𝐹𝑅) 𝑉))
5148, 50pm2.61dane 2869 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊))) → ((𝐹𝑅) (𝐹𝑆)) = ((𝐹𝑅) 𝑉))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  ifcif 4036   class class class wbr 4583   ↦ cmpt 4643  ‘cfv 5804  ℩crio 6510  (class class class)co 6549  Basecbs 15695  lecple 15775  joincjn 16767  meetcmee 16768  0.cp0 16860  OLcol 33479  Atomscatm 33568  HLchlt 33655  LHypclh 34288 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-riotaBAD 33257 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-undef 7286  df-preset 16751  df-poset 16769  df-plt 16781  df-lub 16797  df-glb 16798  df-join 16799  df-meet 16800  df-p0 16862  df-p1 16863  df-lat 16869  df-clat 16931  df-oposet 33481  df-ol 33483  df-oml 33484  df-covers 33571  df-ats 33572  df-atl 33603  df-cvlat 33627  df-hlat 33656  df-llines 33802  df-lplanes 33803  df-lvols 33804  df-lines 33805  df-psubsp 33807  df-pmap 33808  df-padd 34100  df-lhyp 34292 This theorem is referenced by:  cdleme42keg  34792  cdleme42mN  34793  cdlemeg46fjv  34829
 Copyright terms: Public domain W3C validator