Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme42ke Structured version   Visualization version   Unicode version

Theorem cdleme42ke 34064
Description: Part of proof of Lemma E in [Crawley] p. 113. Remove  R  =/= 
S condition. TODO: FIX COMMENT. (Contributed by NM, 2-Apr-2013.)
Hypotheses
Ref Expression
cdleme41.b  |-  B  =  ( Base `  K
)
cdleme41.l  |-  .<_  =  ( le `  K )
cdleme41.j  |-  .\/  =  ( join `  K )
cdleme41.m  |-  ./\  =  ( meet `  K )
cdleme41.a  |-  A  =  ( Atoms `  K )
cdleme41.h  |-  H  =  ( LHyp `  K
)
cdleme41.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme41.d  |-  D  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
cdleme41.e  |-  E  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
cdleme41.g  |-  G  =  ( ( P  .\/  Q )  ./\  ( E  .\/  ( ( s  .\/  t )  ./\  W
) ) )
cdleme41.i  |-  I  =  ( iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  G ) )
cdleme41.n  |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  D
)
cdleme41.o  |-  O  =  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( N  .\/  ( x 
./\  W ) ) ) )
cdleme41.f  |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  O ,  x ) )
cdleme34e.v  |-  V  =  ( ( R  .\/  S )  ./\  W )
Assertion
Ref Expression
cdleme42ke  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  ->  ( ( F `
 R )  .\/  ( F `  S ) )  =  ( ( F `  R ) 
.\/  V ) )
Distinct variable groups:    A, s    .\/ , s    .<_ , s    ./\ , s    P, s    Q, s    R, s    S, s    U, s    W, s    y, t, A, s    B, s, t, y    y, D    y, G    E, s,
y    H, s, t, y   
t,  .\/ , y    K, s, t, y    t,  .<_ , y   
t,  ./\ , y    t, P, y    t, Q, y    t, R, y    t, S, y   
t, U, y    t, W, y    x, z, A   
x, B, z    z, E, s    z, H    x,  .\/ , z    z, K    x,  .<_ , z    x,  ./\ , z    x, N, z    x, P, z   
x, Q, z    x, R, z    x, S, z   
x, U, z    x, W, z, s, t, y    V, s, t, x, z
Allowed substitution hints:    D( x, z, t, s)    E( x, t)    F( x, y, z, t, s)    G( x, z, t, s)    H( x)    I( x, y, z, t, s)    K( x)    N( y, t, s)    O( x, y, z, t, s)    V( y)

Proof of Theorem cdleme42ke
StepHypRef Expression
1 simpl1l 1060 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  ->  K  e.  HL )
2 simpr2 1016 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  ->  ( R  e.  A  /\  -.  R  .<_  W ) )
3 cdleme41.b . . . . . . . 8  |-  B  =  ( Base `  K
)
4 cdleme41.l . . . . . . . 8  |-  .<_  =  ( le `  K )
5 cdleme41.j . . . . . . . 8  |-  .\/  =  ( join `  K )
6 cdleme41.m . . . . . . . 8  |-  ./\  =  ( meet `  K )
7 cdleme41.a . . . . . . . 8  |-  A  =  ( Atoms `  K )
8 cdleme41.h . . . . . . . 8  |-  H  =  ( LHyp `  K
)
9 cdleme41.u . . . . . . . 8  |-  U  =  ( ( P  .\/  Q )  ./\  W )
10 cdleme41.d . . . . . . . 8  |-  D  =  ( ( s  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  s )  ./\  W
) ) )
11 cdleme41.e . . . . . . . 8  |-  E  =  ( ( t  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  t )  ./\  W
) ) )
12 cdleme41.g . . . . . . . 8  |-  G  =  ( ( P  .\/  Q )  ./\  ( E  .\/  ( ( s  .\/  t )  ./\  W
) ) )
13 cdleme41.i . . . . . . . 8  |-  I  =  ( iota_ y  e.  B  A. t  e.  A  ( ( -.  t  .<_  W  /\  -.  t  .<_  ( P  .\/  Q
) )  ->  y  =  G ) )
14 cdleme41.n . . . . . . . 8  |-  N  =  if ( s  .<_  ( P  .\/  Q ) ,  I ,  D
)
15 cdleme41.o . . . . . . . 8  |-  O  =  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( N  .\/  ( x 
./\  W ) ) ) )
16 cdleme41.f . . . . . . . 8  |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  O ,  x ) )
173, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16cdleme32fvaw 34018 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  ->  ( ( F `  R )  e.  A  /\  -.  ( F `  R )  .<_  W ) )
182, 17syldan 473 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  ->  ( ( F `
 R )  e.  A  /\  -.  ( F `  R )  .<_  W ) )
1918simpld 461 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  ->  ( F `  R )  e.  A
)
205, 7hlatjidm 32946 . . . . 5  |-  ( ( K  e.  HL  /\  ( F `  R )  e.  A )  -> 
( ( F `  R )  .\/  ( F `  R )
)  =  ( F `
 R ) )
211, 19, 20syl2anc 667 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  ->  ( ( F `
 R )  .\/  ( F `  R ) )  =  ( F `
 R ) )
22 fveq2 5870 . . . . 5  |-  ( R  =  S  ->  ( F `  R )  =  ( F `  S ) )
2322oveq2d 6311 . . . 4  |-  ( R  =  S  ->  (
( F `  R
)  .\/  ( F `  R ) )  =  ( ( F `  R )  .\/  ( F `  S )
) )
2421, 23sylan9req 2508 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  /\  R  =  S )  ->  ( F `  R )  =  ( ( F `  R
)  .\/  ( F `  S ) ) )
25 simpr2l 1068 . . . . . . . . 9  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  ->  R  e.  A
)
265, 7hlatjidm 32946 . . . . . . . . 9  |-  ( ( K  e.  HL  /\  R  e.  A )  ->  ( R  .\/  R
)  =  R )
271, 25, 26syl2anc 667 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  ->  ( R  .\/  R )  =  R )
2827oveq1d 6310 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  ->  ( ( R 
.\/  R )  ./\  W )  =  ( R 
./\  W ) )
29 simpl1 1012 . . . . . . . 8  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
30 eqid 2453 . . . . . . . . 9  |-  ( 0.
`  K )  =  ( 0. `  K
)
314, 6, 30, 7, 8lhpmat 33607 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  -.  R  .<_  W ) )  -> 
( R  ./\  W
)  =  ( 0.
`  K ) )
3229, 2, 31syl2anc 667 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  ->  ( R  ./\  W )  =  ( 0.
`  K ) )
3328, 32eqtrd 2487 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  ->  ( ( R 
.\/  R )  ./\  W )  =  ( 0.
`  K ) )
3433oveq2d 6311 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  ->  ( ( F `
 R )  .\/  ( ( R  .\/  R )  ./\  W )
)  =  ( ( F `  R ) 
.\/  ( 0. `  K ) ) )
35 hlol 32939 . . . . . . 7  |-  ( K  e.  HL  ->  K  e.  OL )
361, 35syl 17 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  ->  K  e.  OL )
373, 7atbase 32867 . . . . . . 7  |-  ( ( F `  R )  e.  A  ->  ( F `  R )  e.  B )
3819, 37syl 17 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  ->  ( F `  R )  e.  B
)
393, 5, 30olj01 32803 . . . . . 6  |-  ( ( K  e.  OL  /\  ( F `  R )  e.  B )  -> 
( ( F `  R )  .\/  ( 0. `  K ) )  =  ( F `  R ) )
4036, 38, 39syl2anc 667 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  ->  ( ( F `
 R )  .\/  ( 0. `  K ) )  =  ( F `
 R ) )
4134, 40eqtrd 2487 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  ->  ( ( F `
 R )  .\/  ( ( R  .\/  R )  ./\  W )
)  =  ( F `
 R ) )
42 oveq2 6303 . . . . . . 7  |-  ( R  =  S  ->  ( R  .\/  R )  =  ( R  .\/  S
) )
4342oveq1d 6310 . . . . . 6  |-  ( R  =  S  ->  (
( R  .\/  R
)  ./\  W )  =  ( ( R 
.\/  S )  ./\  W ) )
44 cdleme34e.v . . . . . 6  |-  V  =  ( ( R  .\/  S )  ./\  W )
4543, 44syl6eqr 2505 . . . . 5  |-  ( R  =  S  ->  (
( R  .\/  R
)  ./\  W )  =  V )
4645oveq2d 6311 . . . 4  |-  ( R  =  S  ->  (
( F `  R
)  .\/  ( ( R  .\/  R )  ./\  W ) )  =  ( ( F `  R
)  .\/  V )
)
4741, 46sylan9req 2508 . . 3  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  /\  R  =  S )  ->  ( F `  R )  =  ( ( F `  R
)  .\/  V )
)
4824, 47eqtr3d 2489 . 2  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  /\  R  =  S )  ->  ( ( F `  R )  .\/  ( F `  S
) )  =  ( ( F `  R
)  .\/  V )
)
493, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 44cdleme42k 34063 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) )  /\  R  =/=  S )  -> 
( ( F `  R )  .\/  ( F `  S )
)  =  ( ( F `  R ) 
.\/  V ) )
50493expa 1209 . 2  |-  ( ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  /\  R  =/=  S
)  ->  ( ( F `  R )  .\/  ( F `  S
) )  =  ( ( F `  R
)  .\/  V )
)
5148, 50pm2.61dane 2713 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( P  =/=  Q  /\  ( R  e.  A  /\  -.  R  .<_  W )  /\  ( S  e.  A  /\  -.  S  .<_  W ) ) )  ->  ( ( F `
 R )  .\/  ( F `  S ) )  =  ( ( F `  R ) 
.\/  V ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 371    /\ w3a 986    = wceq 1446    e. wcel 1889    =/= wne 2624   A.wral 2739   ifcif 3883   class class class wbr 4405    |-> cmpt 4464   ` cfv 5585   iota_crio 6256  (class class class)co 6295   Basecbs 15133   lecple 15209   joincjn 16201   meetcmee 16202   0.cp0 16295   OLcol 32752   Atomscatm 32841   HLchlt 32928   LHypclh 33561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671  ax-4 1684  ax-5 1760  ax-6 1807  ax-7 1853  ax-8 1891  ax-9 1898  ax-10 1917  ax-11 1922  ax-12 1935  ax-13 2093  ax-ext 2433  ax-rep 4518  ax-sep 4528  ax-nul 4537  ax-pow 4584  ax-pr 4642  ax-un 6588  ax-riotaBAD 32537
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 987  df-3an 988  df-tru 1449  df-ex 1666  df-nf 1670  df-sb 1800  df-eu 2305  df-mo 2306  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2583  df-ne 2626  df-nel 2627  df-ral 2744  df-rex 2745  df-reu 2746  df-rmo 2747  df-rab 2748  df-v 3049  df-sbc 3270  df-csb 3366  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-nul 3734  df-if 3884  df-pw 3955  df-sn 3971  df-pr 3973  df-op 3977  df-uni 4202  df-iun 4283  df-iin 4284  df-br 4406  df-opab 4465  df-mpt 4466  df-id 4752  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5549  df-fun 5587  df-fn 5588  df-f 5589  df-f1 5590  df-fo 5591  df-f1o 5592  df-fv 5593  df-riota 6257  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-1st 6798  df-2nd 6799  df-undef 7025  df-preset 16185  df-poset 16203  df-plt 16216  df-lub 16232  df-glb 16233  df-join 16234  df-meet 16235  df-p0 16297  df-p1 16298  df-lat 16304  df-clat 16366  df-oposet 32754  df-ol 32756  df-oml 32757  df-covers 32844  df-ats 32845  df-atl 32876  df-cvlat 32900  df-hlat 32929  df-llines 33075  df-lplanes 33076  df-lvols 33077  df-lines 33078  df-psubsp 33080  df-pmap 33081  df-padd 33373  df-lhyp 33565
This theorem is referenced by:  cdleme42keg  34065  cdleme42mN  34066  cdlemeg46fjv  34102
  Copyright terms: Public domain W3C validator