MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  catpropd Structured version   Visualization version   GIF version

Theorem catpropd 16192
Description: Two structures with the same base, hom-sets and composition operation are either both categories or neither. (Contributed by Mario Carneiro, 5-Jan-2017.)
Hypotheses
Ref Expression
catpropd.1 (𝜑 → (Homf𝐶) = (Homf𝐷))
catpropd.2 (𝜑 → (compf𝐶) = (compf𝐷))
catpropd.3 (𝜑𝐶𝑉)
catpropd.4 (𝜑𝐷𝑊)
Assertion
Ref Expression
catpropd (𝜑 → (𝐶 ∈ Cat ↔ 𝐷 ∈ Cat))

Proof of Theorem catpropd
Dummy variables 𝑓 𝑔 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 472 . . . . . . . . . . 11 (((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧))
21ralimi 2936 . . . . . . . . . 10 (∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))) → ∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧))
32ralimi 2936 . . . . . . . . 9 (∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))) → ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧))
43ralimi 2936 . . . . . . . 8 (∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))) → ∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧))
54ralimi 2936 . . . . . . 7 (∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))) → ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧))
65adantl 481 . . . . . 6 ((∃𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))) → ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧))
76ralimi 2936 . . . . 5 (∀𝑥 ∈ (Base‘𝐶)(∃𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))) → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧))
87a1i 11 . . . 4 (𝜑 → (∀𝑥 ∈ (Base‘𝐶)(∃𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))) → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)))
9 simpl 472 . . . . . . . . . . 11 (((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧))
109ralimi 2936 . . . . . . . . . 10 (∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))) → ∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧))
1110ralimi 2936 . . . . . . . . 9 (∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))) → ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧))
1211ralimi 2936 . . . . . . . 8 (∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))) → ∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧))
1312ralimi 2936 . . . . . . 7 (∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))) → ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧))
1413adantl 481 . . . . . 6 ((∃𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))) → ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧))
1514ralimi 2936 . . . . 5 (∀𝑥 ∈ (Base‘𝐶)(∃𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))) → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧))
1615a1i 11 . . . 4 (𝜑 → (∀𝑥 ∈ (Base‘𝐶)(∃𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))) → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)))
17 nfra1 2925 . . . . . . . 8 𝑦𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)
18 nfv 1830 . . . . . . . 8 𝑥𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤)
19 nfra1 2925 . . . . . . . . . 10 𝑧𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)
20 nfv 1830 . . . . . . . . . 10 𝑦𝑤 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑥(Hom ‘𝐶)𝑧)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑥(Hom ‘𝐶)𝑤)
21 nfra1 2925 . . . . . . . . . . . . . 14 𝑔𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)
22 nfv 1830 . . . . . . . . . . . . . 14 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑧)((⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑔) ∈ (𝑥(Hom ‘𝐶)𝑧)
23 oveq1 6556 . . . . . . . . . . . . . . . . 17 (𝑔 = → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = ((⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))
2423eleq1d 2672 . . . . . . . . . . . . . . . 16 (𝑔 = → ((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ↔ ((⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)))
2524cbvralv 3147 . . . . . . . . . . . . . . 15 (∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ↔ ∀ ∈ (𝑦(Hom ‘𝐶)𝑧)((⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧))
26 oveq2 6557 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝑔 → ((⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = ((⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑔))
2726eleq1d 2672 . . . . . . . . . . . . . . . 16 (𝑓 = 𝑔 → (((⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ↔ ((⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑔) ∈ (𝑥(Hom ‘𝐶)𝑧)))
2827ralbidv 2969 . . . . . . . . . . . . . . 15 (𝑓 = 𝑔 → (∀ ∈ (𝑦(Hom ‘𝐶)𝑧)((⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ↔ ∀ ∈ (𝑦(Hom ‘𝐶)𝑧)((⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑔) ∈ (𝑥(Hom ‘𝐶)𝑧)))
2925, 28syl5bb 271 . . . . . . . . . . . . . 14 (𝑓 = 𝑔 → (∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ↔ ∀ ∈ (𝑦(Hom ‘𝐶)𝑧)((⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑔) ∈ (𝑥(Hom ‘𝐶)𝑧)))
3021, 22, 29cbvral 3143 . . . . . . . . . . . . 13 (∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ↔ ∀𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)∀ ∈ (𝑦(Hom ‘𝐶)𝑧)((⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑔) ∈ (𝑥(Hom ‘𝐶)𝑧))
31 oveq2 6557 . . . . . . . . . . . . . . 15 (𝑧 = 𝑤 → (𝑦(Hom ‘𝐶)𝑧) = (𝑦(Hom ‘𝐶)𝑤))
32 oveq2 6557 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝑤 → (⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧) = (⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤))
3332oveqd 6566 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑤 → ((⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑔) = ((⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑔))
34 oveq2 6557 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑤 → (𝑥(Hom ‘𝐶)𝑧) = (𝑥(Hom ‘𝐶)𝑤))
3533, 34eleq12d 2682 . . . . . . . . . . . . . . 15 (𝑧 = 𝑤 → (((⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑔) ∈ (𝑥(Hom ‘𝐶)𝑧) ↔ ((⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑥(Hom ‘𝐶)𝑤)))
3631, 35raleqbidv 3129 . . . . . . . . . . . . . 14 (𝑧 = 𝑤 → (∀ ∈ (𝑦(Hom ‘𝐶)𝑧)((⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑔) ∈ (𝑥(Hom ‘𝐶)𝑧) ↔ ∀ ∈ (𝑦(Hom ‘𝐶)𝑤)((⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑥(Hom ‘𝐶)𝑤)))
3736ralbidv 2969 . . . . . . . . . . . . 13 (𝑧 = 𝑤 → (∀𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)∀ ∈ (𝑦(Hom ‘𝐶)𝑧)((⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑔) ∈ (𝑥(Hom ‘𝐶)𝑧) ↔ ∀𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)∀ ∈ (𝑦(Hom ‘𝐶)𝑤)((⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑥(Hom ‘𝐶)𝑤)))
3830, 37syl5bb 271 . . . . . . . . . . . 12 (𝑧 = 𝑤 → (∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ↔ ∀𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)∀ ∈ (𝑦(Hom ‘𝐶)𝑤)((⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑥(Hom ‘𝐶)𝑤)))
3938cbvralv 3147 . . . . . . . . . . 11 (∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ↔ ∀𝑤 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)∀ ∈ (𝑦(Hom ‘𝐶)𝑤)((⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑥(Hom ‘𝐶)𝑤))
40 oveq2 6557 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → (𝑥(Hom ‘𝐶)𝑦) = (𝑥(Hom ‘𝐶)𝑧))
41 oveq1 6556 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → (𝑦(Hom ‘𝐶)𝑤) = (𝑧(Hom ‘𝐶)𝑤))
42 opeq2 4341 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑧 → ⟨𝑥, 𝑦⟩ = ⟨𝑥, 𝑧⟩)
4342oveq1d 6564 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑧 → (⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤) = (⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤))
4443oveqd 6566 . . . . . . . . . . . . . . 15 (𝑦 = 𝑧 → ((⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑔) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)𝑔))
4544eleq1d 2672 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → (((⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑥(Hom ‘𝐶)𝑤) ↔ ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑥(Hom ‘𝐶)𝑤)))
4641, 45raleqbidv 3129 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → (∀ ∈ (𝑦(Hom ‘𝐶)𝑤)((⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑥(Hom ‘𝐶)𝑤) ↔ ∀ ∈ (𝑧(Hom ‘𝐶)𝑤)((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑥(Hom ‘𝐶)𝑤)))
4740, 46raleqbidv 3129 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (∀𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)∀ ∈ (𝑦(Hom ‘𝐶)𝑤)((⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑥(Hom ‘𝐶)𝑤) ↔ ∀𝑔 ∈ (𝑥(Hom ‘𝐶)𝑧)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑥(Hom ‘𝐶)𝑤)))
4847ralbidv 2969 . . . . . . . . . . 11 (𝑦 = 𝑧 → (∀𝑤 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑥(Hom ‘𝐶)𝑦)∀ ∈ (𝑦(Hom ‘𝐶)𝑤)((⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑥(Hom ‘𝐶)𝑤) ↔ ∀𝑤 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑥(Hom ‘𝐶)𝑧)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑥(Hom ‘𝐶)𝑤)))
4939, 48syl5bb 271 . . . . . . . . . 10 (𝑦 = 𝑧 → (∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ↔ ∀𝑤 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑥(Hom ‘𝐶)𝑧)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑥(Hom ‘𝐶)𝑤)))
5019, 20, 49cbvral 3143 . . . . . . . . 9 (∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ↔ ∀𝑧 ∈ (Base‘𝐶)∀𝑤 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑥(Hom ‘𝐶)𝑧)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑥(Hom ‘𝐶)𝑤))
51 oveq1 6556 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (𝑥(Hom ‘𝐶)𝑧) = (𝑦(Hom ‘𝐶)𝑧))
52 opeq1 4340 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → ⟨𝑥, 𝑧⟩ = ⟨𝑦, 𝑧⟩)
5352oveq1d 6564 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤) = (⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤))
5453oveqd 6566 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)𝑔) = ((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔))
55 oveq1 6556 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (𝑥(Hom ‘𝐶)𝑤) = (𝑦(Hom ‘𝐶)𝑤))
5654, 55eleq12d 2682 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑥(Hom ‘𝐶)𝑤) ↔ ((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤)))
5756ralbidv 2969 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (∀ ∈ (𝑧(Hom ‘𝐶)𝑤)((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑥(Hom ‘𝐶)𝑤) ↔ ∀ ∈ (𝑧(Hom ‘𝐶)𝑤)((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤)))
5851, 57raleqbidv 3129 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (∀𝑔 ∈ (𝑥(Hom ‘𝐶)𝑧)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑥(Hom ‘𝐶)𝑤) ↔ ∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤)))
5958ralbidv 2969 . . . . . . . . . . 11 (𝑥 = 𝑦 → (∀𝑤 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑥(Hom ‘𝐶)𝑧)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑥(Hom ‘𝐶)𝑤) ↔ ∀𝑤 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤)))
60 ralcom 3079 . . . . . . . . . . 11 (∀𝑤 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤) ↔ ∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤))
6159, 60syl6bb 275 . . . . . . . . . 10 (𝑥 = 𝑦 → (∀𝑤 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑥(Hom ‘𝐶)𝑧)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑥(Hom ‘𝐶)𝑤) ↔ ∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤)))
6261ralbidv 2969 . . . . . . . . 9 (𝑥 = 𝑦 → (∀𝑧 ∈ (Base‘𝐶)∀𝑤 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑥(Hom ‘𝐶)𝑧)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑥(Hom ‘𝐶)𝑤) ↔ ∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤)))
6350, 62syl5bb 271 . . . . . . . 8 (𝑥 = 𝑦 → (∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ↔ ∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤)))
6417, 18, 63cbvral 3143 . . . . . . 7 (∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ↔ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤))
6564biimpi 205 . . . . . 6 (∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) → ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤))
6665ancri 573 . . . . 5 (∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) → (∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤) ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)))
67 r19.26 3046 . . . . . . . . . . . 12 (∀𝑦 ∈ (Base‘𝐶)(∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤) ∧ ∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) ↔ (∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)))
68 r19.26 3046 . . . . . . . . . . . . . . 15 (∀𝑧 ∈ (Base‘𝐶)(∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤) ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) ↔ (∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤) ∧ ∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)))
69 r19.26 3046 . . . . . . . . . . . . . . . . . . . . . . . 24 (∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) ↔ (∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤) ∧ ∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)))
70 eqid 2610 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (Base‘𝐶) = (Base‘𝐶)
71 eqid 2610 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (Hom ‘𝐶) = (Hom ‘𝐶)
72 eqid 2610 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (comp‘𝐶) = (comp‘𝐶)
73 eqid 2610 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (comp‘𝐷) = (comp‘𝐷)
74 catpropd.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝜑 → (Homf𝐶) = (Homf𝐷))
7574adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑𝑥 ∈ (Base‘𝐶)) → (Homf𝐶) = (Homf𝐷))
7675ad4antr 764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → (Homf𝐶) = (Homf𝐷))
7776ad4antr 764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((((((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ ((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤)) → (Homf𝐶) = (Homf𝐷))
78 catpropd.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝜑 → (compf𝐶) = (compf𝐷))
7978ad5antr 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → (compf𝐶) = (compf𝐷))
8079ad4antr 764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((((((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ ((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤)) → (compf𝐶) = (compf𝐷))
81 simpllr 795 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
8281ad2antrr 758 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → 𝑥 ∈ (Base‘𝐶))
8382ad4antr 764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((((((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ ((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤)) → 𝑥 ∈ (Base‘𝐶))
84 simp-4r 803 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → 𝑦 ∈ (Base‘𝐶))
8584ad4antr 764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((((((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ ((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤)) → 𝑦 ∈ (Base‘𝐶))
86 simpllr 795 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((((((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ ((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤)) → 𝑤 ∈ (Base‘𝐶))
87 simplr 788 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
8887ad4antr 764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((((((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ ((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤)) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
89 simpr 476 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((((((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ ((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤)) → ((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤))
9070, 71, 72, 73, 77, 80, 83, 85, 86, 88, 89comfeqval 16191 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((((((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ ((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤)) → (((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = (((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓))
91 simpllr 795 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → 𝑧 ∈ (Base‘𝐶))
9291ad4antr 764 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((((((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ ((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤)) → 𝑧 ∈ (Base‘𝐶))
93 simp-4r 803 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((((((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ ((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤)) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧))
94 simplr 788 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((((((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ ((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤)) → ∈ (𝑧(Hom ‘𝐶)𝑤))
9570, 71, 72, 73, 77, 80, 83, 92, 86, 93, 94comfeqval 16191 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((((((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ ((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤)) → ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))
9690, 95eqeq12d 2625 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((((((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) ∧ ((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤)) → ((((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) ↔ (((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))))
9796ex 449 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((((((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → (((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤) → ((((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) ↔ (((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))))
9897ralimdva 2945 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) → (∀ ∈ (𝑧(Hom ‘𝐶)𝑤)((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤) → ∀ ∈ (𝑧(Hom ‘𝐶)𝑤)((((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) ↔ (((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))))
99 ralbi 3050 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (∀ ∈ (𝑧(Hom ‘𝐶)𝑤)((((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) ↔ (((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))) → (∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) ↔ ∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))))
10098, 99syl6 34 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) → (∀ ∈ (𝑧(Hom ‘𝐶)𝑤)((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤) → (∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) ↔ ∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))))
101100ralimdva 2945 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) → (∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤) → ∀𝑤 ∈ (Base‘𝐶)(∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) ↔ ∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))))
102101impancom 455 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤)) → ((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) → ∀𝑤 ∈ (Base‘𝐶)(∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) ↔ ∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))))
103102impr 647 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ (∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧))) → ∀𝑤 ∈ (Base‘𝐶)(∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) ↔ ∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))))
104 ralbi 3050 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (∀𝑤 ∈ (Base‘𝐶)(∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) ↔ ∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))) → (∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) ↔ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))))
105103, 104syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ (∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧))) → (∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) ↔ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))))
106105anbi2d 736 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ (∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧))) → (((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))) ↔ ((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))))
107106ex 449 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → ((∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) → (((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))) ↔ ((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))))))
108107ralimdva 2945 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤) ∧ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) → ∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))) ↔ ((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))))))
10969, 108syl5bir 232 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤) ∧ ∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) → ∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))) ↔ ((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))))))
110109expdimp 452 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ ∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤)) → (∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) → ∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))) ↔ ((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))))))
111 ralbi 3050 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))) ↔ ((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))) → (∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))) ↔ ∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))))
112110, 111syl6 34 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ ∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤)) → (∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) → (∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))) ↔ ∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))))))
113112an32s 842 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ ∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) → (∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))) ↔ ∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))))))
114113ralimdva 2945 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ ∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤)) → (∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) → ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))) ↔ ∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))))))
115 ralbi 3050 . . . . . . . . . . . . . . . . . . 19 (∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))) ↔ ∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))) → (∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))) ↔ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))))
116114, 115syl6 34 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ ∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤)) → (∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) → (∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))) ↔ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))))))
117116expimpd 627 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) → ((∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤) ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) → (∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))) ↔ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))))))
118117ralimdva 2945 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) → (∀𝑧 ∈ (Base‘𝐶)(∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤) ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) → ∀𝑧 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))) ↔ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))))))
119 ralbi 3050 . . . . . . . . . . . . . . . 16 (∀𝑧 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))) ↔ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))) → (∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))) ↔ ∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))))
120118, 119syl6 34 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) → (∀𝑧 ∈ (Base‘𝐶)(∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤) ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) → (∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))) ↔ ∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))))))
12168, 120syl5bir 232 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) → ((∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤) ∧ ∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) → (∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))) ↔ ∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))))))
122121ralimdva 2945 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝐶)) → (∀𝑦 ∈ (Base‘𝐶)(∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤) ∧ ∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) → ∀𝑦 ∈ (Base‘𝐶)(∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))) ↔ ∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))))))
123 ralbi 3050 . . . . . . . . . . . . 13 (∀𝑦 ∈ (Base‘𝐶)(∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))) ↔ ∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))) → (∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))) ↔ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))))
124122, 123syl6 34 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝐶)) → (∀𝑦 ∈ (Base‘𝐶)(∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤) ∧ ∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) → (∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))) ↔ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))))))
12567, 124syl5bir 232 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) → (∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))) ↔ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))))))
126125imp 444 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ (∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧))) → (∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))) ↔ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))))
127126an4s 865 . . . . . . . . 9 (((𝜑 ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤)) ∧ (𝑥 ∈ (Base‘𝐶) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧))) → (∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))) ↔ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))))
128127anbi2d 736 . . . . . . . 8 (((𝜑 ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤)) ∧ (𝑥 ∈ (Base‘𝐶) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧))) → ((∃𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))) ↔ (∃𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))))))
129128expr 641 . . . . . . 7 (((𝜑 ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤)) ∧ 𝑥 ∈ (Base‘𝐶)) → (∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) → ((∃𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))) ↔ (∃𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))))))
130129ralimdva 2945 . . . . . 6 ((𝜑 ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤)) → (∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) → ∀𝑥 ∈ (Base‘𝐶)((∃𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))) ↔ (∃𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))))))
131130expimpd 627 . . . . 5 (𝜑 → ((∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) ∈ (𝑦(Hom ‘𝐶)𝑤) ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧)) → ∀𝑥 ∈ (Base‘𝐶)((∃𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))) ↔ (∃𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))))))
132 ralbi 3050 . . . . 5 (∀𝑥 ∈ (Base‘𝐶)((∃𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))) ↔ (∃𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))))) → (∀𝑥 ∈ (Base‘𝐶)(∃𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))) ↔ ∀𝑥 ∈ (Base‘𝐶)(∃𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))))))
13366, 131, 132syl56 35 . . . 4 (𝜑 → (∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) → (∀𝑥 ∈ (Base‘𝐶)(∃𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))) ↔ ∀𝑥 ∈ (Base‘𝐶)(∃𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))))))
1348, 16, 133pm5.21ndd 368 . . 3 (𝜑 → (∀𝑥 ∈ (Base‘𝐶)(∃𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))) ↔ ∀𝑥 ∈ (Base‘𝐶)(∃𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))))))
13574homfeqbas 16179 . . . 4 (𝜑 → (Base‘𝐶) = (Base‘𝐷))
136 eqid 2610 . . . . . . 7 (Hom ‘𝐷) = (Hom ‘𝐷)
137 simpr 476 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
13870, 71, 136, 75, 137, 137homfeqval 16180 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → (𝑥(Hom ‘𝐶)𝑥) = (𝑥(Hom ‘𝐷)𝑥))
139135ad2antrr 758 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) → (Base‘𝐶) = (Base‘𝐷))
14075ad2antrr 758 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) → (Homf𝐶) = (Homf𝐷))
141 simpr 476 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) → 𝑦 ∈ (Base‘𝐶))
142 simpllr 795 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
14370, 71, 136, 140, 141, 142homfeqval 16180 . . . . . . . . 9 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑦(Hom ‘𝐶)𝑥) = (𝑦(Hom ‘𝐷)𝑥))
14474ad4antr 764 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → (Homf𝐶) = (Homf𝐷))
14578ad4antr 764 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → (compf𝐶) = (compf𝐷))
146 simplr 788 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → 𝑦 ∈ (Base‘𝐶))
147 simp-4r 803 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → 𝑥 ∈ (Base‘𝐶))
148 simpr 476 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥))
149 simpllr 795 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥))
15070, 71, 72, 73, 144, 145, 146, 147, 147, 148, 149comfeqval 16191 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → (𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = (𝑔(⟨𝑦, 𝑥⟩(comp‘𝐷)𝑥)𝑓))
151150eqeq1d 2612 . . . . . . . . 9 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)) → ((𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ↔ (𝑔(⟨𝑦, 𝑥⟩(comp‘𝐷)𝑥)𝑓) = 𝑓))
152143, 151raleqbidva 3131 . . . . . . . 8 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) → (∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ↔ ∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐷)𝑥)𝑓) = 𝑓))
15370, 71, 136, 140, 142, 141homfeqval 16180 . . . . . . . . 9 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥(Hom ‘𝐶)𝑦) = (𝑥(Hom ‘𝐷)𝑦))
15474ad4antr 764 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (Homf𝐶) = (Homf𝐷))
15578ad4antr 764 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (compf𝐶) = (compf𝐷))
156 simp-4r 803 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑥 ∈ (Base‘𝐶))
157 simplr 788 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑦 ∈ (Base‘𝐶))
158 simpllr 795 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥))
159 simpr 476 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
16070, 71, 72, 73, 154, 155, 156, 156, 157, 158, 159comfeqval 16191 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = (𝑓(⟨𝑥, 𝑥⟩(comp‘𝐷)𝑦)𝑔))
161160eqeq1d 2612 . . . . . . . . 9 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → ((𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓 ↔ (𝑓(⟨𝑥, 𝑥⟩(comp‘𝐷)𝑦)𝑔) = 𝑓))
162153, 161raleqbidva 3131 . . . . . . . 8 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) → (∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓 ↔ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐷)𝑦)𝑔) = 𝑓))
163152, 162anbi12d 743 . . . . . . 7 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) ∧ 𝑦 ∈ (Base‘𝐶)) → ((∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓) ↔ (∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐷)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐷)𝑦)𝑔) = 𝑓)))
164139, 163raleqbidva 3131 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)) → (∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓) ↔ ∀𝑦 ∈ (Base‘𝐷)(∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐷)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐷)𝑦)𝑔) = 𝑓)))
165138, 164rexeqbidva 3132 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (∃𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓) ↔ ∃𝑔 ∈ (𝑥(Hom ‘𝐷)𝑥)∀𝑦 ∈ (Base‘𝐷)(∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐷)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐷)𝑦)𝑔) = 𝑓)))
166135adantr 480 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐶)) → (Base‘𝐶) = (Base‘𝐷))
167166adantr 480 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) → (Base‘𝐶) = (Base‘𝐷))
16875ad2antrr 758 . . . . . . . . 9 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) → (Homf𝐶) = (Homf𝐷))
169 simplr 788 . . . . . . . . 9 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) → 𝑦 ∈ (Base‘𝐶))
17070, 71, 136, 168, 81, 169homfeqval 16180 . . . . . . . 8 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) → (𝑥(Hom ‘𝐶)𝑦) = (𝑥(Hom ‘𝐷)𝑦))
171 simpr 476 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) → 𝑧 ∈ (Base‘𝐶))
17270, 71, 136, 168, 169, 171homfeqval 16180 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) → (𝑦(Hom ‘𝐶)𝑧) = (𝑦(Hom ‘𝐷)𝑧))
173172adantr 480 . . . . . . . . 9 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (𝑦(Hom ‘𝐶)𝑧) = (𝑦(Hom ‘𝐷)𝑧))
174 simpr 476 . . . . . . . . . . . 12 ((((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))
17570, 71, 72, 73, 76, 79, 82, 84, 91, 87, 174comfeqval 16191 . . . . . . . . . . 11 ((((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓))
17670, 71, 136, 168, 81, 171homfeqval 16180 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) → (𝑥(Hom ‘𝐶)𝑧) = (𝑥(Hom ‘𝐷)𝑧))
177176ad2antrr 758 . . . . . . . . . . 11 ((((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → (𝑥(Hom ‘𝐶)𝑧) = (𝑥(Hom ‘𝐷)𝑧))
178175, 177eleq12d 2682 . . . . . . . . . 10 ((((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → ((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ↔ (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐷)𝑧)))
179166ad4antr 764 . . . . . . . . . . 11 ((((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → (Base‘𝐶) = (Base‘𝐷))
18076adantr 480 . . . . . . . . . . . . 13 (((((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) → (Homf𝐶) = (Homf𝐷))
181 simp-4r 803 . . . . . . . . . . . . 13 (((((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) → 𝑧 ∈ (Base‘𝐶))
182 simpr 476 . . . . . . . . . . . . 13 (((((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) → 𝑤 ∈ (Base‘𝐶))
18370, 71, 136, 180, 181, 182homfeqval 16180 . . . . . . . . . . . 12 (((((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) → (𝑧(Hom ‘𝐶)𝑤) = (𝑧(Hom ‘𝐷)𝑤))
184168ad4antr 764 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → (Homf𝐶) = (Homf𝐷))
18578ad7antr 770 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → (compf𝐶) = (compf𝐷))
186169ad4antr 764 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝑦 ∈ (Base‘𝐶))
187171ad4antr 764 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝑧 ∈ (Base‘𝐶))
188 simplr 788 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝑤 ∈ (Base‘𝐶))
189 simpllr 795 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧))
190 simpr 476 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → ∈ (𝑧(Hom ‘𝐶)𝑤))
19170, 71, 72, 73, 184, 185, 186, 187, 188, 189, 190comfeqval 16191 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔) = ((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔))
192191oveq1d 6564 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → (((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = (((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓))
19381ad4antr 764 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝑥 ∈ (Base‘𝐶))
194 simp-4r 803 . . . . . . . . . . . . . . 15 ((((((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦))
19570, 71, 72, 73, 184, 185, 193, 186, 187, 194, 189comfeqval 16191 . . . . . . . . . . . . . 14 ((((((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) = (𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓))
196195oveq2d 6565 . . . . . . . . . . . . 13 ((((((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓)))
197192, 196eqeq12d 2625 . . . . . . . . . . . 12 ((((((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) ∧ ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) ↔ (((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓))))
198183, 197raleqbidva 3131 . . . . . . . . . . 11 (((((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) ∧ 𝑤 ∈ (Base‘𝐶)) → (∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) ↔ ∀ ∈ (𝑧(Hom ‘𝐷)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓))))
199179, 198raleqbidva 3131 . . . . . . . . . 10 ((((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → (∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)) ↔ ∀𝑤 ∈ (Base‘𝐷)∀ ∈ (𝑧(Hom ‘𝐷)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓))))
200178, 199anbi12d 743 . . . . . . . . 9 ((((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) ∧ 𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)) → (((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))) ↔ ((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐷)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐷)∀ ∈ (𝑧(Hom ‘𝐷)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓)))))
201173, 200raleqbidva 3131 . . . . . . . 8 (((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)) → (∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))) ↔ ∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐷)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐷)∀ ∈ (𝑧(Hom ‘𝐷)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓)))))
202170, 201raleqbidva 3131 . . . . . . 7 ((((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) ∧ 𝑧 ∈ (Base‘𝐶)) → (∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))) ↔ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐷)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐷)∀ ∈ (𝑧(Hom ‘𝐷)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓)))))
203167, 202raleqbidva 3131 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝐶)) ∧ 𝑦 ∈ (Base‘𝐶)) → (∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))) ↔ ∀𝑧 ∈ (Base‘𝐷)∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐷)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐷)∀ ∈ (𝑧(Hom ‘𝐷)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓)))))
204166, 203raleqbidva 3131 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐶)) → (∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))) ↔ ∀𝑦 ∈ (Base‘𝐷)∀𝑧 ∈ (Base‘𝐷)∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐷)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐷)∀ ∈ (𝑧(Hom ‘𝐷)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓)))))
205165, 204anbi12d 743 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐶)) → ((∃𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))) ↔ (∃𝑔 ∈ (𝑥(Hom ‘𝐷)𝑥)∀𝑦 ∈ (Base‘𝐷)(∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐷)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐷)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐷)∀𝑧 ∈ (Base‘𝐷)∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐷)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐷)∀ ∈ (𝑧(Hom ‘𝐷)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓))))))
206135, 205raleqbidva 3131 . . 3 (𝜑 → (∀𝑥 ∈ (Base‘𝐶)(∃𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))) ↔ ∀𝑥 ∈ (Base‘𝐷)(∃𝑔 ∈ (𝑥(Hom ‘𝐷)𝑥)∀𝑦 ∈ (Base‘𝐷)(∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐷)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐷)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐷)∀𝑧 ∈ (Base‘𝐷)∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐷)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐷)∀ ∈ (𝑧(Hom ‘𝐷)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓))))))
207134, 206bitrd 267 . 2 (𝜑 → (∀𝑥 ∈ (Base‘𝐶)(∃𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓)))) ↔ ∀𝑥 ∈ (Base‘𝐷)(∃𝑔 ∈ (𝑥(Hom ‘𝐷)𝑥)∀𝑦 ∈ (Base‘𝐷)(∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐷)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐷)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐷)∀𝑧 ∈ (Base‘𝐷)∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐷)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐷)∀ ∈ (𝑧(Hom ‘𝐷)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓))))))
208 catpropd.3 . . 3 (𝜑𝐶𝑉)
20970, 71, 72iscat 16156 . . 3 (𝐶𝑉 → (𝐶 ∈ Cat ↔ ∀𝑥 ∈ (Base‘𝐶)(∃𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))))))
210208, 209syl 17 . 2 (𝜑 → (𝐶 ∈ Cat ↔ ∀𝑥 ∈ (Base‘𝐶)(∃𝑔 ∈ (𝑥(Hom ‘𝐶)𝑥)∀𝑦 ∈ (Base‘𝐶)(∀𝑓 ∈ (𝑦(Hom ‘𝐶)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐶)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐶)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐶)∀𝑧 ∈ (Base‘𝐶)∀𝑓 ∈ (𝑥(Hom ‘𝐶)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐶)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐶)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐶)∀ ∈ (𝑧(Hom ‘𝐶)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐶)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐶)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐶)𝑧)𝑓))))))
211 catpropd.4 . . 3 (𝜑𝐷𝑊)
212 eqid 2610 . . . 4 (Base‘𝐷) = (Base‘𝐷)
213212, 136, 73iscat 16156 . . 3 (𝐷𝑊 → (𝐷 ∈ Cat ↔ ∀𝑥 ∈ (Base‘𝐷)(∃𝑔 ∈ (𝑥(Hom ‘𝐷)𝑥)∀𝑦 ∈ (Base‘𝐷)(∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐷)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐷)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐷)∀𝑧 ∈ (Base‘𝐷)∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐷)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐷)∀ ∈ (𝑧(Hom ‘𝐷)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓))))))
214211, 213syl 17 . 2 (𝜑 → (𝐷 ∈ Cat ↔ ∀𝑥 ∈ (Base‘𝐷)(∃𝑔 ∈ (𝑥(Hom ‘𝐷)𝑥)∀𝑦 ∈ (Base‘𝐷)(∀𝑓 ∈ (𝑦(Hom ‘𝐷)𝑥)(𝑔(⟨𝑦, 𝑥⟩(comp‘𝐷)𝑥)𝑓) = 𝑓 ∧ ∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)(𝑓(⟨𝑥, 𝑥⟩(comp‘𝐷)𝑦)𝑔) = 𝑓) ∧ ∀𝑦 ∈ (Base‘𝐷)∀𝑧 ∈ (Base‘𝐷)∀𝑓 ∈ (𝑥(Hom ‘𝐷)𝑦)∀𝑔 ∈ (𝑦(Hom ‘𝐷)𝑧)((𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓) ∈ (𝑥(Hom ‘𝐷)𝑧) ∧ ∀𝑤 ∈ (Base‘𝐷)∀ ∈ (𝑧(Hom ‘𝐷)𝑤)(((⟨𝑦, 𝑧⟩(comp‘𝐷)𝑤)𝑔)(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑤)𝑓) = ((⟨𝑥, 𝑧⟩(comp‘𝐷)𝑤)(𝑔(⟨𝑥, 𝑦⟩(comp‘𝐷)𝑧)𝑓))))))
215207, 210, 2143bitr4d 299 1 (𝜑 → (𝐶 ∈ Cat ↔ 𝐷 ∈ Cat))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  cop 4131  cfv 5804  (class class class)co 6549  Basecbs 15695  Hom chom 15779  compcco 15780  Catccat 16148  Homf chomf 16150  compfccomf 16151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-cat 16152  df-homf 16154  df-comf 16155
This theorem is referenced by:  cidpropd  16193  resscat  16335  funcpropd  16383
  Copyright terms: Public domain W3C validator