Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj124 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj150 30200. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj124.1 | ⊢ 𝐹 = {〈∅, pred(𝑥, 𝐴, 𝑅)〉} |
bnj124.2 | ⊢ (𝜑″ ↔ [𝐹 / 𝑓]𝜑′) |
bnj124.3 | ⊢ (𝜓″ ↔ [𝐹 / 𝑓]𝜓′) |
bnj124.4 | ⊢ (𝜁″ ↔ [𝐹 / 𝑓]𝜁′) |
bnj124.5 | ⊢ (𝜁′ ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 1𝑜 ∧ 𝜑′ ∧ 𝜓′))) |
Ref | Expression |
---|---|
bnj124 | ⊢ (𝜁″ ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐹 Fn 1𝑜 ∧ 𝜑″ ∧ 𝜓″))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj124.4 | . 2 ⊢ (𝜁″ ↔ [𝐹 / 𝑓]𝜁′) | |
2 | bnj124.5 | . . . 4 ⊢ (𝜁′ ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 1𝑜 ∧ 𝜑′ ∧ 𝜓′))) | |
3 | 2 | sbcbii 3458 | . . 3 ⊢ ([𝐹 / 𝑓]𝜁′ ↔ [𝐹 / 𝑓]((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 1𝑜 ∧ 𝜑′ ∧ 𝜓′))) |
4 | bnj124.1 | . . . . 5 ⊢ 𝐹 = {〈∅, pred(𝑥, 𝐴, 𝑅)〉} | |
5 | 4 | bnj95 30188 | . . . 4 ⊢ 𝐹 ∈ V |
6 | nfv 1830 | . . . . 5 ⊢ Ⅎ𝑓(𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) | |
7 | 6 | sbc19.21g 3469 | . . . 4 ⊢ (𝐹 ∈ V → ([𝐹 / 𝑓]((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 1𝑜 ∧ 𝜑′ ∧ 𝜓′)) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → [𝐹 / 𝑓](𝑓 Fn 1𝑜 ∧ 𝜑′ ∧ 𝜓′)))) |
8 | 5, 7 | ax-mp 5 | . . 3 ⊢ ([𝐹 / 𝑓]((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑓 Fn 1𝑜 ∧ 𝜑′ ∧ 𝜓′)) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → [𝐹 / 𝑓](𝑓 Fn 1𝑜 ∧ 𝜑′ ∧ 𝜓′))) |
9 | fneq1 5893 | . . . . . . . 8 ⊢ (𝑓 = 𝑧 → (𝑓 Fn 1𝑜 ↔ 𝑧 Fn 1𝑜)) | |
10 | fneq1 5893 | . . . . . . . 8 ⊢ (𝑧 = 𝐹 → (𝑧 Fn 1𝑜 ↔ 𝐹 Fn 1𝑜)) | |
11 | 9, 10 | sbcie2g 3436 | . . . . . . 7 ⊢ (𝐹 ∈ V → ([𝐹 / 𝑓]𝑓 Fn 1𝑜 ↔ 𝐹 Fn 1𝑜)) |
12 | 5, 11 | ax-mp 5 | . . . . . 6 ⊢ ([𝐹 / 𝑓]𝑓 Fn 1𝑜 ↔ 𝐹 Fn 1𝑜) |
13 | 12 | bicomi 213 | . . . . 5 ⊢ (𝐹 Fn 1𝑜 ↔ [𝐹 / 𝑓]𝑓 Fn 1𝑜) |
14 | bnj124.2 | . . . . 5 ⊢ (𝜑″ ↔ [𝐹 / 𝑓]𝜑′) | |
15 | bnj124.3 | . . . . 5 ⊢ (𝜓″ ↔ [𝐹 / 𝑓]𝜓′) | |
16 | 13, 14, 15, 5 | bnj206 30053 | . . . 4 ⊢ ([𝐹 / 𝑓](𝑓 Fn 1𝑜 ∧ 𝜑′ ∧ 𝜓′) ↔ (𝐹 Fn 1𝑜 ∧ 𝜑″ ∧ 𝜓″)) |
17 | 16 | imbi2i 325 | . . 3 ⊢ (((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → [𝐹 / 𝑓](𝑓 Fn 1𝑜 ∧ 𝜑′ ∧ 𝜓′)) ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐹 Fn 1𝑜 ∧ 𝜑″ ∧ 𝜓″))) |
18 | 3, 8, 17 | 3bitri 285 | . 2 ⊢ ([𝐹 / 𝑓]𝜁′ ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐹 Fn 1𝑜 ∧ 𝜑″ ∧ 𝜓″))) |
19 | 1, 18 | bitri 263 | 1 ⊢ (𝜁″ ↔ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝐹 Fn 1𝑜 ∧ 𝜑″ ∧ 𝜓″))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 ∧ w3a 1031 = wceq 1475 ∈ wcel 1977 Vcvv 3173 [wsbc 3402 ∅c0 3874 {csn 4125 〈cop 4131 Fn wfn 5799 1𝑜c1o 7440 predc-bnj14 30007 FrSe w-bnj15 30011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-br 4584 df-opab 4644 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-fun 5806 df-fn 5807 |
This theorem is referenced by: bnj150 30200 bnj153 30204 |
Copyright terms: Public domain | W3C validator |