Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj124 Structured version   Visualization version   GIF version

Theorem bnj124 30195
Description: Technical lemma for bnj150 30200. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj124.1 𝐹 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}
bnj124.2 (𝜑″[𝐹 / 𝑓]𝜑′)
bnj124.3 (𝜓″[𝐹 / 𝑓]𝜓′)
bnj124.4 (𝜁″[𝐹 / 𝑓]𝜁′)
bnj124.5 (𝜁′ ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 1𝑜𝜑′𝜓′)))
Assertion
Ref Expression
bnj124 (𝜁″ ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → (𝐹 Fn 1𝑜𝜑″𝜓″)))
Distinct variable groups:   𝐴,𝑓   𝑅,𝑓   𝑥,𝑓
Allowed substitution hints:   𝐴(𝑥)   𝑅(𝑥)   𝐹(𝑥,𝑓)   𝜑′(𝑥,𝑓)   𝜓′(𝑥,𝑓)   𝜁′(𝑥,𝑓)   𝜑″(𝑥,𝑓)   𝜓″(𝑥,𝑓)   𝜁″(𝑥,𝑓)

Proof of Theorem bnj124
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 bnj124.4 . 2 (𝜁″[𝐹 / 𝑓]𝜁′)
2 bnj124.5 . . . 4 (𝜁′ ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 1𝑜𝜑′𝜓′)))
32sbcbii 3458 . . 3 ([𝐹 / 𝑓]𝜁′[𝐹 / 𝑓]((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 1𝑜𝜑′𝜓′)))
4 bnj124.1 . . . . 5 𝐹 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}
54bnj95 30188 . . . 4 𝐹 ∈ V
6 nfv 1830 . . . . 5 𝑓(𝑅 FrSe 𝐴𝑥𝐴)
76sbc19.21g 3469 . . . 4 (𝐹 ∈ V → ([𝐹 / 𝑓]((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 1𝑜𝜑′𝜓′)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → [𝐹 / 𝑓](𝑓 Fn 1𝑜𝜑′𝜓′))))
85, 7ax-mp 5 . . 3 ([𝐹 / 𝑓]((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 1𝑜𝜑′𝜓′)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → [𝐹 / 𝑓](𝑓 Fn 1𝑜𝜑′𝜓′)))
9 fneq1 5893 . . . . . . . 8 (𝑓 = 𝑧 → (𝑓 Fn 1𝑜𝑧 Fn 1𝑜))
10 fneq1 5893 . . . . . . . 8 (𝑧 = 𝐹 → (𝑧 Fn 1𝑜𝐹 Fn 1𝑜))
119, 10sbcie2g 3436 . . . . . . 7 (𝐹 ∈ V → ([𝐹 / 𝑓]𝑓 Fn 1𝑜𝐹 Fn 1𝑜))
125, 11ax-mp 5 . . . . . 6 ([𝐹 / 𝑓]𝑓 Fn 1𝑜𝐹 Fn 1𝑜)
1312bicomi 213 . . . . 5 (𝐹 Fn 1𝑜[𝐹 / 𝑓]𝑓 Fn 1𝑜)
14 bnj124.2 . . . . 5 (𝜑″[𝐹 / 𝑓]𝜑′)
15 bnj124.3 . . . . 5 (𝜓″[𝐹 / 𝑓]𝜓′)
1613, 14, 15, 5bnj206 30053 . . . 4 ([𝐹 / 𝑓](𝑓 Fn 1𝑜𝜑′𝜓′) ↔ (𝐹 Fn 1𝑜𝜑″𝜓″))
1716imbi2i 325 . . 3 (((𝑅 FrSe 𝐴𝑥𝐴) → [𝐹 / 𝑓](𝑓 Fn 1𝑜𝜑′𝜓′)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → (𝐹 Fn 1𝑜𝜑″𝜓″)))
183, 8, 173bitri 285 . 2 ([𝐹 / 𝑓]𝜁′ ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → (𝐹 Fn 1𝑜𝜑″𝜓″)))
191, 18bitri 263 1 (𝜁″ ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → (𝐹 Fn 1𝑜𝜑″𝜓″)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  Vcvv 3173  [wsbc 3402  c0 3874  {csn 4125  cop 4131   Fn wfn 5799  1𝑜c1o 7440   predc-bnj14 30007   FrSe w-bnj15 30011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-fun 5806  df-fn 5807
This theorem is referenced by:  bnj150  30200  bnj153  30204
  Copyright terms: Public domain W3C validator