Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj206 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj206.1 | ⊢ (𝜑′ ↔ [𝑀 / 𝑛]𝜑) |
bnj206.2 | ⊢ (𝜓′ ↔ [𝑀 / 𝑛]𝜓) |
bnj206.3 | ⊢ (𝜒′ ↔ [𝑀 / 𝑛]𝜒) |
bnj206.4 | ⊢ 𝑀 ∈ V |
Ref | Expression |
---|---|
bnj206 | ⊢ ([𝑀 / 𝑛](𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑′ ∧ 𝜓′ ∧ 𝜒′)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbc3an 3461 | . 2 ⊢ ([𝑀 / 𝑛](𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ([𝑀 / 𝑛]𝜑 ∧ [𝑀 / 𝑛]𝜓 ∧ [𝑀 / 𝑛]𝜒)) | |
2 | bnj206.1 | . . . 4 ⊢ (𝜑′ ↔ [𝑀 / 𝑛]𝜑) | |
3 | 2 | bicomi 213 | . . 3 ⊢ ([𝑀 / 𝑛]𝜑 ↔ 𝜑′) |
4 | bnj206.2 | . . . 4 ⊢ (𝜓′ ↔ [𝑀 / 𝑛]𝜓) | |
5 | 4 | bicomi 213 | . . 3 ⊢ ([𝑀 / 𝑛]𝜓 ↔ 𝜓′) |
6 | bnj206.3 | . . . 4 ⊢ (𝜒′ ↔ [𝑀 / 𝑛]𝜒) | |
7 | 6 | bicomi 213 | . . 3 ⊢ ([𝑀 / 𝑛]𝜒 ↔ 𝜒′) |
8 | 3, 5, 7 | 3anbi123i 1244 | . 2 ⊢ (([𝑀 / 𝑛]𝜑 ∧ [𝑀 / 𝑛]𝜓 ∧ [𝑀 / 𝑛]𝜒) ↔ (𝜑′ ∧ 𝜓′ ∧ 𝜒′)) |
9 | 1, 8 | bitri 263 | 1 ⊢ ([𝑀 / 𝑛](𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (𝜑′ ∧ 𝜓′ ∧ 𝜒′)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 ∧ w3a 1031 ∈ wcel 1977 Vcvv 3173 [wsbc 3402 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-v 3175 df-sbc 3403 |
This theorem is referenced by: bnj124 30195 bnj207 30205 |
Copyright terms: Public domain | W3C validator |