Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj121 Structured version   Visualization version   GIF version

Theorem bnj121 30194
 Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj121.1 (𝜁 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 𝑛𝜑𝜓)))
bnj121.2 (𝜁′[1𝑜 / 𝑛]𝜁)
bnj121.3 (𝜑′[1𝑜 / 𝑛]𝜑)
bnj121.4 (𝜓′[1𝑜 / 𝑛]𝜓)
Assertion
Ref Expression
bnj121 (𝜁′ ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 1𝑜𝜑′𝜓′)))
Distinct variable groups:   𝐴,𝑛   𝑅,𝑛   𝑓,𝑛   𝑥,𝑛
Allowed substitution hints:   𝜑(𝑥,𝑓,𝑛)   𝜓(𝑥,𝑓,𝑛)   𝜁(𝑥,𝑓,𝑛)   𝐴(𝑥,𝑓)   𝑅(𝑥,𝑓)   𝜑′(𝑥,𝑓,𝑛)   𝜓′(𝑥,𝑓,𝑛)   𝜁′(𝑥,𝑓,𝑛)

Proof of Theorem bnj121
StepHypRef Expression
1 bnj121.1 . . 3 (𝜁 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 𝑛𝜑𝜓)))
21sbcbii 3458 . 2 ([1𝑜 / 𝑛]𝜁[1𝑜 / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 𝑛𝜑𝜓)))
3 bnj121.2 . 2 (𝜁′[1𝑜 / 𝑛]𝜁)
4 bnj105 30044 . . . . . . . 8 1𝑜 ∈ V
54bnj90 30042 . . . . . . 7 ([1𝑜 / 𝑛]𝑓 Fn 𝑛𝑓 Fn 1𝑜)
65bicomi 213 . . . . . 6 (𝑓 Fn 1𝑜[1𝑜 / 𝑛]𝑓 Fn 𝑛)
7 bnj121.3 . . . . . 6 (𝜑′[1𝑜 / 𝑛]𝜑)
8 bnj121.4 . . . . . 6 (𝜓′[1𝑜 / 𝑛]𝜓)
96, 7, 83anbi123i 1244 . . . . 5 ((𝑓 Fn 1𝑜𝜑′𝜓′) ↔ ([1𝑜 / 𝑛]𝑓 Fn 𝑛[1𝑜 / 𝑛]𝜑[1𝑜 / 𝑛]𝜓))
10 sbc3an 3461 . . . . 5 ([1𝑜 / 𝑛](𝑓 Fn 𝑛𝜑𝜓) ↔ ([1𝑜 / 𝑛]𝑓 Fn 𝑛[1𝑜 / 𝑛]𝜑[1𝑜 / 𝑛]𝜓))
119, 10bitr4i 266 . . . 4 ((𝑓 Fn 1𝑜𝜑′𝜓′) ↔ [1𝑜 / 𝑛](𝑓 Fn 𝑛𝜑𝜓))
1211imbi2i 325 . . 3 (((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 1𝑜𝜑′𝜓′)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → [1𝑜 / 𝑛](𝑓 Fn 𝑛𝜑𝜓)))
13 nfv 1830 . . . . 5 𝑛(𝑅 FrSe 𝐴𝑥𝐴)
1413sbc19.21g 3469 . . . 4 (1𝑜 ∈ V → ([1𝑜 / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 𝑛𝜑𝜓)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → [1𝑜 / 𝑛](𝑓 Fn 𝑛𝜑𝜓))))
154, 14ax-mp 5 . . 3 ([1𝑜 / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 𝑛𝜑𝜓)) ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → [1𝑜 / 𝑛](𝑓 Fn 𝑛𝜑𝜓)))
1612, 15bitr4i 266 . 2 (((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 1𝑜𝜑′𝜓′)) ↔ [1𝑜 / 𝑛]((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 𝑛𝜑𝜓)))
172, 3, 163bitr4i 291 1 (𝜁′ ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → (𝑓 Fn 1𝑜𝜑′𝜓′)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   ∈ wcel 1977  Vcvv 3173  [wsbc 3402   Fn wfn 5799  1𝑜c1o 7440   FrSe w-bnj15 30011 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-pw 4110  df-sn 4126  df-suc 5646  df-fn 5807  df-1o 7447 This theorem is referenced by:  bnj150  30200  bnj153  30204
 Copyright terms: Public domain W3C validator