 Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj95 Structured version   Visualization version   GIF version

Theorem bnj95 30188
 Description: Technical lemma for bnj124 30195. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj95.1 𝐹 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}
Assertion
Ref Expression
bnj95 𝐹 ∈ V

Proof of Theorem bnj95
StepHypRef Expression
1 bnj95.1 . 2 𝐹 = {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩}
2 snex 4835 . 2 {⟨∅, pred(𝑥, 𝐴, 𝑅)⟩} ∈ V
31, 2eqeltri 2684 1 𝐹 ∈ V
 Colors of variables: wff setvar class Syntax hints:   = wceq 1475   ∈ wcel 1977  Vcvv 3173  ∅c0 3874  {csn 4125  ⟨cop 4131   predc-bnj14 30007 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-v 3175  df-dif 3543  df-un 3545  df-nul 3875  df-sn 4126  df-pr 4128 This theorem is referenced by:  bnj124  30195  bnj125  30196  bnj126  30197  bnj150  30200
 Copyright terms: Public domain W3C validator