Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj95 Structured version   Unicode version

Theorem bnj95 32170
Description: Technical lemma for bnj124 32177. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj95.1  |-  F  =  { <. (/) ,  pred (
x ,  A ,  R ) >. }
Assertion
Ref Expression
bnj95  |-  F  e. 
_V

Proof of Theorem bnj95
StepHypRef Expression
1 bnj95.1 . 2  |-  F  =  { <. (/) ,  pred (
x ,  A ,  R ) >. }
2 snex 4636 . 2  |-  { <. (/)
,  pred ( x ,  A ,  R )
>. }  e.  _V
31, 2eqeltri 2536 1  |-  F  e. 
_V
Colors of variables: wff setvar class
Syntax hints:    = wceq 1370    e. wcel 1758   _Vcvv 3072   (/)c0 3740   {csn 3980   <.cop 3986    predc-bnj14 31989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1954  ax-ext 2431  ax-sep 4516  ax-nul 4524  ax-pr 4634
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2602  df-ne 2647  df-v 3074  df-dif 3434  df-un 3436  df-nul 3741  df-sn 3981  df-pr 3983
This theorem is referenced by:  bnj124  32177  bnj125  32178  bnj126  32179  bnj150  32182
  Copyright terms: Public domain W3C validator