Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj95 Structured version   Unicode version

Theorem bnj95 29460
Description: Technical lemma for bnj124 29467. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj95.1  |-  F  =  { <. (/) ,  pred (
x ,  A ,  R ) >. }
Assertion
Ref Expression
bnj95  |-  F  e. 
_V

Proof of Theorem bnj95
StepHypRef Expression
1 bnj95.1 . 2  |-  F  =  { <. (/) ,  pred (
x ,  A ,  R ) >. }
2 snex 4654 . 2  |-  { <. (/)
,  pred ( x ,  A ,  R )
>. }  e.  _V
31, 2eqeltri 2504 1  |-  F  e. 
_V
Colors of variables: wff setvar class
Syntax hints:    = wceq 1437    e. wcel 1867   _Vcvv 3078   (/)c0 3758   {csn 3993   <.cop 3999    predc-bnj14 29278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-sep 4539  ax-nul 4547  ax-pr 4652
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-v 3080  df-dif 3436  df-un 3438  df-nul 3759  df-sn 3994  df-pr 3996
This theorem is referenced by:  bnj124  29467  bnj125  29468  bnj126  29469  bnj150  29472
  Copyright terms: Public domain W3C validator