Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj95 Structured version   Unicode version

Theorem bnj95 34323
Description: Technical lemma for bnj124 34330. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj95.1  |-  F  =  { <. (/) ,  pred (
x ,  A ,  R ) >. }
Assertion
Ref Expression
bnj95  |-  F  e. 
_V

Proof of Theorem bnj95
StepHypRef Expression
1 bnj95.1 . 2  |-  F  =  { <. (/) ,  pred (
x ,  A ,  R ) >. }
2 snex 4678 . 2  |-  { <. (/)
,  pred ( x ,  A ,  R )
>. }  e.  _V
31, 2eqeltri 2538 1  |-  F  e. 
_V
Colors of variables: wff setvar class
Syntax hints:    = wceq 1398    e. wcel 1823   _Vcvv 3106   (/)c0 3783   {csn 4016   <.cop 4022    predc-bnj14 34141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pr 4676
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-v 3108  df-dif 3464  df-un 3466  df-nul 3784  df-sn 4017  df-pr 4019
This theorem is referenced by:  bnj124  34330  bnj125  34331  bnj126  34332  bnj150  34335
  Copyright terms: Public domain W3C validator