Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-xpimasn | Structured version Visualization version GIF version |
Description: The image of a singleton, general case. [Change and relabel xpimasn 5498 accordingly, maybe to xpima2sn.] (Contributed by BJ, 6-Apr-2019.) |
Ref | Expression |
---|---|
bj-xpimasn | ⊢ ((𝐴 × 𝐵) “ {𝑋}) = if(𝑋 ∈ 𝐴, 𝐵, ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpima 5495 | . 2 ⊢ ((𝐴 × 𝐵) “ {𝑋}) = if((𝐴 ∩ {𝑋}) = ∅, ∅, 𝐵) | |
2 | disjsn 4192 | . . 3 ⊢ ((𝐴 ∩ {𝑋}) = ∅ ↔ ¬ 𝑋 ∈ 𝐴) | |
3 | eqid 2610 | . . 3 ⊢ 𝐵 = 𝐵 | |
4 | 2, 3 | ifbieq2i 4060 | . 2 ⊢ if((𝐴 ∩ {𝑋}) = ∅, ∅, 𝐵) = if(¬ 𝑋 ∈ 𝐴, ∅, 𝐵) |
5 | ifnot 4083 | . 2 ⊢ if(¬ 𝑋 ∈ 𝐴, ∅, 𝐵) = if(𝑋 ∈ 𝐴, 𝐵, ∅) | |
6 | 1, 4, 5 | 3eqtri 2636 | 1 ⊢ ((𝐴 × 𝐵) “ {𝑋}) = if(𝑋 ∈ 𝐴, 𝐵, ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1475 ∈ wcel 1977 ∩ cin 3539 ∅c0 3874 ifcif 4036 {csn 4125 × cxp 5036 “ cima 5041 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pr 4833 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rab 2905 df-v 3175 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-br 4584 df-opab 4644 df-xp 5044 df-rel 5045 df-cnv 5046 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 |
This theorem is referenced by: bj-xpima1sn 32136 bj-xpima2sn 32138 |
Copyright terms: Public domain | W3C validator |