Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-1nel0 | Structured version Visualization version GIF version |
Description: 1𝑜 does not belong to {∅}. (Contributed by BJ, 6-Apr-2019.) |
Ref | Expression |
---|---|
bj-1nel0 | ⊢ 1𝑜 ∉ {∅} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1n0 7462 | . . . 4 ⊢ 1𝑜 ≠ ∅ | |
2 | 1 | neii 2784 | . . 3 ⊢ ¬ 1𝑜 = ∅ |
3 | elsni 4142 | . . 3 ⊢ (1𝑜 ∈ {∅} → 1𝑜 = ∅) | |
4 | 2, 3 | mto 187 | . 2 ⊢ ¬ 1𝑜 ∈ {∅} |
5 | 4 | nelir 2886 | 1 ⊢ 1𝑜 ∉ {∅} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1475 ∈ wcel 1977 ∉ wnel 2781 ∅c0 3874 {csn 4125 1𝑜c1o 7440 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-nul 4717 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-v 3175 df-dif 3543 df-un 3545 df-nul 3875 df-sn 4126 df-suc 5646 df-1o 7447 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |