Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-elid | Structured version Visualization version GIF version |
Description: Characterization of the elements of I. (Contributed by BJ, 22-Jun-2019.) |
Ref | Expression |
---|---|
bj-elid | ⊢ (𝐴 ∈ I ↔ (𝐴 ∈ (V × V) ∧ (1st ‘𝐴) = (2nd ‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reli 5171 | . . . . 5 ⊢ Rel I | |
2 | df-rel 5045 | . . . . 5 ⊢ (Rel I ↔ I ⊆ (V × V)) | |
3 | 1, 2 | mpbi 219 | . . . 4 ⊢ I ⊆ (V × V) |
4 | 3 | sseli 3564 | . . 3 ⊢ (𝐴 ∈ I → 𝐴 ∈ (V × V)) |
5 | 1st2nd2 7096 | . . . . . . 7 ⊢ (𝐴 ∈ (V × V) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
6 | 4, 5 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ I → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) |
7 | 6 | eleq1d 2672 | . . . . 5 ⊢ (𝐴 ∈ I → (𝐴 ∈ I ↔ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ I )) |
8 | 7 | ibi 255 | . . . 4 ⊢ (𝐴 ∈ I → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ I ) |
9 | df-id 4953 | . . . . . 6 ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} | |
10 | 9 | eleq2i 2680 | . . . . 5 ⊢ (〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ I ↔ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦}) |
11 | fvex 6113 | . . . . . 6 ⊢ (1st ‘𝐴) ∈ V | |
12 | fvex 6113 | . . . . . 6 ⊢ (2nd ‘𝐴) ∈ V | |
13 | eqeq12 2623 | . . . . . 6 ⊢ ((𝑥 = (1st ‘𝐴) ∧ 𝑦 = (2nd ‘𝐴)) → (𝑥 = 𝑦 ↔ (1st ‘𝐴) = (2nd ‘𝐴))) | |
14 | 11, 12, 13 | opelopaba 4916 | . . . . 5 ⊢ (〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} ↔ (1st ‘𝐴) = (2nd ‘𝐴)) |
15 | 10, 14 | bitri 263 | . . . 4 ⊢ (〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ I ↔ (1st ‘𝐴) = (2nd ‘𝐴)) |
16 | 8, 15 | sylib 207 | . . 3 ⊢ (𝐴 ∈ I → (1st ‘𝐴) = (2nd ‘𝐴)) |
17 | 4, 16 | jca 553 | . 2 ⊢ (𝐴 ∈ I → (𝐴 ∈ (V × V) ∧ (1st ‘𝐴) = (2nd ‘𝐴))) |
18 | 5 | eleq1d 2672 | . . . . 5 ⊢ (𝐴 ∈ (V × V) → (𝐴 ∈ I ↔ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ I )) |
19 | 18 | biimprd 237 | . . . 4 ⊢ (𝐴 ∈ (V × V) → (〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ I → 𝐴 ∈ I )) |
20 | 15, 19 | syl5bir 232 | . . 3 ⊢ (𝐴 ∈ (V × V) → ((1st ‘𝐴) = (2nd ‘𝐴) → 𝐴 ∈ I )) |
21 | 20 | imp 444 | . 2 ⊢ ((𝐴 ∈ (V × V) ∧ (1st ‘𝐴) = (2nd ‘𝐴)) → 𝐴 ∈ I ) |
22 | 17, 21 | impbii 198 | 1 ⊢ (𝐴 ∈ I ↔ (𝐴 ∈ (V × V) ∧ (1st ‘𝐴) = (2nd ‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 Vcvv 3173 ⊆ wss 3540 〈cop 4131 {copab 4642 I cid 4948 × cxp 5036 Rel wrel 5043 ‘cfv 5804 1st c1st 7057 2nd c2nd 7058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-iota 5768 df-fun 5806 df-fv 5812 df-1st 7059 df-2nd 7060 |
This theorem is referenced by: bj-elid2 32263 bj-elid3 32264 |
Copyright terms: Public domain | W3C validator |