Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-elid3 Structured version   Visualization version   GIF version

Theorem bj-elid3 32264
Description: Characterization of the elements of I. (Contributed by BJ, 29-Mar-2020.)
Assertion
Ref Expression
bj-elid3 (⟨𝐴, 𝐵⟩ ∈ I ↔ (𝐴 ∈ V ∧ 𝐴 = 𝐵))

Proof of Theorem bj-elid3
StepHypRef Expression
1 bj-elid 32262 . 2 (⟨𝐴, 𝐵⟩ ∈ I ↔ (⟨𝐴, 𝐵⟩ ∈ (V × V) ∧ (1st ‘⟨𝐴, 𝐵⟩) = (2nd ‘⟨𝐴, 𝐵⟩)))
2 opelxp 5070 . . . 4 (⟨𝐴, 𝐵⟩ ∈ (V × V) ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V))
32anbi1i 727 . . 3 ((⟨𝐴, 𝐵⟩ ∈ (V × V) ∧ (1st ‘⟨𝐴, 𝐵⟩) = (2nd ‘⟨𝐴, 𝐵⟩)) ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (1st ‘⟨𝐴, 𝐵⟩) = (2nd ‘⟨𝐴, 𝐵⟩)))
4 op1stg 7071 . . . . . 6 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (1st ‘⟨𝐴, 𝐵⟩) = 𝐴)
5 op2ndg 7072 . . . . . 6 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (2nd ‘⟨𝐴, 𝐵⟩) = 𝐵)
64, 5eqeq12d 2625 . . . . 5 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((1st ‘⟨𝐴, 𝐵⟩) = (2nd ‘⟨𝐴, 𝐵⟩) ↔ 𝐴 = 𝐵))
76pm5.32i 667 . . . 4 (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (1st ‘⟨𝐴, 𝐵⟩) = (2nd ‘⟨𝐴, 𝐵⟩)) ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵))
8 simpl 472 . . . . . 6 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐴 ∈ V)
98anim1i 590 . . . . 5 (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵) → (𝐴 ∈ V ∧ 𝐴 = 𝐵))
10 simpl 472 . . . . . 6 ((𝐴 ∈ V ∧ 𝐴 = 𝐵) → 𝐴 ∈ V)
11 eleq1 2676 . . . . . . 7 (𝐴 = 𝐵 → (𝐴 ∈ V ↔ 𝐵 ∈ V))
1211biimpac 502 . . . . . 6 ((𝐴 ∈ V ∧ 𝐴 = 𝐵) → 𝐵 ∈ V)
13 simpr 476 . . . . . 6 ((𝐴 ∈ V ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵)
1410, 12, 13jca31 555 . . . . 5 ((𝐴 ∈ V ∧ 𝐴 = 𝐵) → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵))
159, 14impbii 198 . . . 4 (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵) ↔ (𝐴 ∈ V ∧ 𝐴 = 𝐵))
167, 15bitri 263 . . 3 (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (1st ‘⟨𝐴, 𝐵⟩) = (2nd ‘⟨𝐴, 𝐵⟩)) ↔ (𝐴 ∈ V ∧ 𝐴 = 𝐵))
173, 16bitri 263 . 2 ((⟨𝐴, 𝐵⟩ ∈ (V × V) ∧ (1st ‘⟨𝐴, 𝐵⟩) = (2nd ‘⟨𝐴, 𝐵⟩)) ↔ (𝐴 ∈ V ∧ 𝐴 = 𝐵))
181, 17bitri 263 1 (⟨𝐴, 𝐵⟩ ∈ I ↔ (𝐴 ∈ V ∧ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 195  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  cop 4131   I cid 4948   × cxp 5036  cfv 5804  1st c1st 7057  2nd c2nd 7058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-iota 5768  df-fun 5806  df-fv 5812  df-1st 7059  df-2nd 7060
This theorem is referenced by:  bj-eldiag2  32269
  Copyright terms: Public domain W3C validator