Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-elid3 | Structured version Visualization version GIF version |
Description: Characterization of the elements of I. (Contributed by BJ, 29-Mar-2020.) |
Ref | Expression |
---|---|
bj-elid3 | ⊢ (〈𝐴, 𝐵〉 ∈ I ↔ (𝐴 ∈ V ∧ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-elid 32262 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ I ↔ (〈𝐴, 𝐵〉 ∈ (V × V) ∧ (1st ‘〈𝐴, 𝐵〉) = (2nd ‘〈𝐴, 𝐵〉))) | |
2 | opelxp 5070 | . . . 4 ⊢ (〈𝐴, 𝐵〉 ∈ (V × V) ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
3 | 2 | anbi1i 727 | . . 3 ⊢ ((〈𝐴, 𝐵〉 ∈ (V × V) ∧ (1st ‘〈𝐴, 𝐵〉) = (2nd ‘〈𝐴, 𝐵〉)) ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (1st ‘〈𝐴, 𝐵〉) = (2nd ‘〈𝐴, 𝐵〉))) |
4 | op1stg 7071 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (1st ‘〈𝐴, 𝐵〉) = 𝐴) | |
5 | op2ndg 7072 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (2nd ‘〈𝐴, 𝐵〉) = 𝐵) | |
6 | 4, 5 | eqeq12d 2625 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((1st ‘〈𝐴, 𝐵〉) = (2nd ‘〈𝐴, 𝐵〉) ↔ 𝐴 = 𝐵)) |
7 | 6 | pm5.32i 667 | . . . 4 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (1st ‘〈𝐴, 𝐵〉) = (2nd ‘〈𝐴, 𝐵〉)) ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵)) |
8 | simpl 472 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐴 ∈ V) | |
9 | 8 | anim1i 590 | . . . . 5 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵) → (𝐴 ∈ V ∧ 𝐴 = 𝐵)) |
10 | simpl 472 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 𝐴 = 𝐵) → 𝐴 ∈ V) | |
11 | eleq1 2676 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ V ↔ 𝐵 ∈ V)) | |
12 | 11 | biimpac 502 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 𝐴 = 𝐵) → 𝐵 ∈ V) |
13 | simpr 476 | . . . . . 6 ⊢ ((𝐴 ∈ V ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵) | |
14 | 10, 12, 13 | jca31 555 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ 𝐴 = 𝐵) → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵)) |
15 | 9, 14 | impbii 198 | . . . 4 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝐴 = 𝐵) ↔ (𝐴 ∈ V ∧ 𝐴 = 𝐵)) |
16 | 7, 15 | bitri 263 | . . 3 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (1st ‘〈𝐴, 𝐵〉) = (2nd ‘〈𝐴, 𝐵〉)) ↔ (𝐴 ∈ V ∧ 𝐴 = 𝐵)) |
17 | 3, 16 | bitri 263 | . 2 ⊢ ((〈𝐴, 𝐵〉 ∈ (V × V) ∧ (1st ‘〈𝐴, 𝐵〉) = (2nd ‘〈𝐴, 𝐵〉)) ↔ (𝐴 ∈ V ∧ 𝐴 = 𝐵)) |
18 | 1, 17 | bitri 263 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ I ↔ (𝐴 ∈ V ∧ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 Vcvv 3173 〈cop 4131 I cid 4948 × cxp 5036 ‘cfv 5804 1st c1st 7057 2nd c2nd 7058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-iota 5768 df-fun 5806 df-fv 5812 df-1st 7059 df-2nd 7060 |
This theorem is referenced by: bj-eldiag2 32269 |
Copyright terms: Public domain | W3C validator |