Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  axunndlem1 Structured version   Visualization version   GIF version

Theorem axunndlem1 9296
 Description: Lemma for the Axiom of Union with no distinct variable conditions. (Contributed by NM, 2-Jan-2002.)
Assertion
Ref Expression
axunndlem1 𝑥𝑦(∃𝑥(𝑦𝑥𝑥𝑧) → 𝑦𝑥)
Distinct variable groups:   𝑥,𝑦   𝑥,𝑧

Proof of Theorem axunndlem1
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 en2lp 8393 . . . . . . . 8 ¬ (𝑦𝑥𝑥𝑦)
2 elequ2 1991 . . . . . . . . 9 (𝑦 = 𝑧 → (𝑥𝑦𝑥𝑧))
32anbi2d 736 . . . . . . . 8 (𝑦 = 𝑧 → ((𝑦𝑥𝑥𝑦) ↔ (𝑦𝑥𝑥𝑧)))
41, 3mtbii 315 . . . . . . 7 (𝑦 = 𝑧 → ¬ (𝑦𝑥𝑥𝑧))
54sps 2043 . . . . . 6 (∀𝑦 𝑦 = 𝑧 → ¬ (𝑦𝑥𝑥𝑧))
65nexdv 1851 . . . . 5 (∀𝑦 𝑦 = 𝑧 → ¬ ∃𝑥(𝑦𝑥𝑥𝑧))
76pm2.21d 117 . . . 4 (∀𝑦 𝑦 = 𝑧 → (∃𝑥(𝑦𝑥𝑥𝑧) → 𝑦𝑥))
87axc4i 2116 . . 3 (∀𝑦 𝑦 = 𝑧 → ∀𝑦(∃𝑥(𝑦𝑥𝑥𝑧) → 𝑦𝑥))
9 19.8a 2039 . . 3 (∀𝑦(∃𝑥(𝑦𝑥𝑥𝑧) → 𝑦𝑥) → ∃𝑥𝑦(∃𝑥(𝑦𝑥𝑥𝑧) → 𝑦𝑥))
108, 9syl 17 . 2 (∀𝑦 𝑦 = 𝑧 → ∃𝑥𝑦(∃𝑥(𝑦𝑥𝑥𝑧) → 𝑦𝑥))
11 zfun 6848 . . 3 𝑥𝑤(∃𝑥(𝑤𝑥𝑥𝑧) → 𝑤𝑥)
12 nfnae 2306 . . . . 5 𝑦 ¬ ∀𝑦 𝑦 = 𝑧
13 nfnae 2306 . . . . . . 7 𝑥 ¬ ∀𝑦 𝑦 = 𝑧
14 nfvd 1831 . . . . . . . 8 (¬ ∀𝑦 𝑦 = 𝑧 → Ⅎ𝑦 𝑤𝑥)
15 nfcvf 2774 . . . . . . . . 9 (¬ ∀𝑦 𝑦 = 𝑧𝑦𝑧)
1615nfcrd 2757 . . . . . . . 8 (¬ ∀𝑦 𝑦 = 𝑧 → Ⅎ𝑦 𝑥𝑧)
1714, 16nfand 1814 . . . . . . 7 (¬ ∀𝑦 𝑦 = 𝑧 → Ⅎ𝑦(𝑤𝑥𝑥𝑧))
1813, 17nfexd 2153 . . . . . 6 (¬ ∀𝑦 𝑦 = 𝑧 → Ⅎ𝑦𝑥(𝑤𝑥𝑥𝑧))
1918, 14nfimd 1812 . . . . 5 (¬ ∀𝑦 𝑦 = 𝑧 → Ⅎ𝑦(∃𝑥(𝑤𝑥𝑥𝑧) → 𝑤𝑥))
20 elequ1 1984 . . . . . . . . 9 (𝑤 = 𝑦 → (𝑤𝑥𝑦𝑥))
2120anbi1d 737 . . . . . . . 8 (𝑤 = 𝑦 → ((𝑤𝑥𝑥𝑧) ↔ (𝑦𝑥𝑥𝑧)))
2221exbidv 1837 . . . . . . 7 (𝑤 = 𝑦 → (∃𝑥(𝑤𝑥𝑥𝑧) ↔ ∃𝑥(𝑦𝑥𝑥𝑧)))
2322, 20imbi12d 333 . . . . . 6 (𝑤 = 𝑦 → ((∃𝑥(𝑤𝑥𝑥𝑧) → 𝑤𝑥) ↔ (∃𝑥(𝑦𝑥𝑥𝑧) → 𝑦𝑥)))
2423a1i 11 . . . . 5 (¬ ∀𝑦 𝑦 = 𝑧 → (𝑤 = 𝑦 → ((∃𝑥(𝑤𝑥𝑥𝑧) → 𝑤𝑥) ↔ (∃𝑥(𝑦𝑥𝑥𝑧) → 𝑦𝑥))))
2512, 19, 24cbvald 2265 . . . 4 (¬ ∀𝑦 𝑦 = 𝑧 → (∀𝑤(∃𝑥(𝑤𝑥𝑥𝑧) → 𝑤𝑥) ↔ ∀𝑦(∃𝑥(𝑦𝑥𝑥𝑧) → 𝑦𝑥)))
2625exbidv 1837 . . 3 (¬ ∀𝑦 𝑦 = 𝑧 → (∃𝑥𝑤(∃𝑥(𝑤𝑥𝑥𝑧) → 𝑤𝑥) ↔ ∃𝑥𝑦(∃𝑥(𝑦𝑥𝑥𝑧) → 𝑦𝑥)))
2711, 26mpbii 222 . 2 (¬ ∀𝑦 𝑦 = 𝑧 → ∃𝑥𝑦(∃𝑥(𝑦𝑥𝑥𝑧) → 𝑦𝑥))
2810, 27pm2.61i 175 1 𝑥𝑦(∃𝑥(𝑦𝑥𝑥𝑧) → 𝑦𝑥)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383  ∀wal 1473  ∃wex 1695 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833  ax-un 6847  ax-reg 8380 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-br 4584  df-opab 4644  df-eprel 4949  df-fr 4997 This theorem is referenced by:  axunnd  9297
 Copyright terms: Public domain W3C validator