Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfcrd | Structured version Visualization version GIF version |
Description: Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfeqd.1 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Ref | Expression |
---|---|
nfcrd | ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfeqd.1 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
2 | nfcr 2743 | . 2 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥 𝑦 ∈ 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Ⅎwnf 1699 ∈ wcel 1977 Ⅎwnfc 2738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-12 2034 |
This theorem depends on definitions: df-bi 196 df-ex 1696 df-nfc 2740 |
This theorem is referenced by: nfeqd 2758 nfeld 2759 dvelimdc 2772 nfcsbd 3516 nfifd 4064 axextnd 9292 axrepndlem1 9293 axunndlem1 9296 axregnd 9305 axextdist 30949 nfiund 42219 |
Copyright terms: Public domain | W3C validator |