Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcrd Structured version   Visualization version   GIF version

Theorem nfcrd 2757
 Description: Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfeqd.1 (𝜑𝑥𝐴)
Assertion
Ref Expression
nfcrd (𝜑 → Ⅎ𝑥 𝑦𝐴)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)

Proof of Theorem nfcrd
StepHypRef Expression
1 nfeqd.1 . 2 (𝜑𝑥𝐴)
2 nfcr 2743 . 2 (𝑥𝐴 → Ⅎ𝑥 𝑦𝐴)
31, 2syl 17 1 (𝜑 → Ⅎ𝑥 𝑦𝐴)
 Colors of variables: wff setvar class Syntax hints:   → wi 4  Ⅎwnf 1699   ∈ wcel 1977  Ⅎwnfc 2738 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-12 2034 This theorem depends on definitions:  df-bi 196  df-ex 1696  df-nfc 2740 This theorem is referenced by:  nfeqd  2758  nfeld  2759  dvelimdc  2772  nfcsbd  3516  nfifd  4064  axextnd  9292  axrepndlem1  9293  axunndlem1  9296  axregnd  9305  axextdist  30949  nfiund  42219
 Copyright terms: Public domain W3C validator